# Finding and Inputting Data into EnergyPLAN

(The FIDE Guide)



David Connolly Aalborg University

david@plan.aau.dk www.dconnolly.net

26 January 2015 Version 5 Print Double Sided

## **Table of Contents**

| Section | Title                                                    | Page |
|---------|----------------------------------------------------------|------|
| 1       | Introduction                                             | 3    |
| 2       | Why EnergyPLAN?                                          | 4    |
| 3       | Collecting the Required Data                             | 5    |
| 3.1     | Technical Data Required                                  | 7    |
| 3.2     | Demand Tab                                               | 7    |
| 3.2.1   | Electricity                                              | 9    |
| 3.2.2   | Heating                                                  | 10   |
| 3.2.3   | Cooling                                                  | 14   |
| 3.2.4   | Industry                                                 | 15   |
| 3.2.5   | Transport                                                | 16   |
| 3.3     | Supply Tab                                               | 16   |
| 3.3.1   | Heat and Electricity                                     | 16   |
| 3.3.2   | Electricity Only                                         | 17   |
| 3.3.3   | Waste                                                    | 25   |
| 3.3.4   | CO2                                                      | 26   |
| 3.4     | Balancing and Storage                                    | 28   |
| 3.4.1   | Electricity Storage                                      | 28   |
| 3.5     | Economic Data Required                                   | 28   |
| 3.5.1   | General                                                  | 29   |
| 3.5.2   | Investment Tab                                           | 30   |
| 3.5.3   | Fuel Tab                                                 | 32   |
| 3.5.4   | Variable OM                                              | 34   |
| 4       | Areas of Difficulty                                      | 35   |
| 4.1     | Thermal Energy System                                    | 35   |
| 4.2     | District Heating Groups                                  | 36   |
| 4.3     | Technical Simulation vs. Market Simulation               | 36   |
| 4.3.1   | Business-economic vs. Socio-economic calculations        | 37   |
| 4.4     | Comparing Energy Systems                                 | 38   |
| 4.5     | External Electricity Market Price                        | 38   |
| 4.6     | Operation Strategy for Electricity Storage               | 38   |
| 4.6.1   | Storage capacity for the double penstock system strategy | 40   |
| 4.7     | Description of 'stabload' from EnergyPLAN results window | 42   |
| 4.8     | Abbreviations for the Results window                     | 44   |
| 4.9     | Understanding the Print Results                          | 49   |
| 4.9.1   | Page 1: To be completed                                  |      |
| 4.9.2   | Page 2: To be completed                                  |      |
| 5       | Verifying Reference Model Data                           |      |
| 6       | Conclusions                                              |      |

#### January 26, 2015 FINDING AND INPUTTING DATA INTO ENERGYPLAN

| 7   | Appendix55                      |
|-----|---------------------------------|
| 7.1 | Ireland's Energy Balance 200755 |
| 8   | References                      |

## **1** Introduction

This is a brief description of my experience when I learned how to use the energy tool EnergyPLAN [1]. It is a short description of why I chose EnergyPLAN for my particular study, followed by a brief account of the sources I used to gather the data for the model.

When I was carrying out my work using EnergyPLAN, I did not know where to begin looking for a lot of the data I needed. As a result, the primary aim of this document is to share with others where and how I found the required data for my model. I hope that this brief overview of my experience will enable the reader to use EnergyPLAN quicker and more effectively. Finally, I welcome any contributions that could be made to improve the content of this document, such as new sources of data or suggestions for new content..

## Nomenclature

#### Symbols

| GigajouleEThe General Electric CompanyIDDHeat degree daysEAInternational Energy Agency |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IDD Heat degree days                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EA International Energy Agency                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| W Kilowatt                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Wh Kilowatt hour                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| g Kilogram                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1€ Million Euro                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12 Data buoy number 2 around the Irish coast                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14 Data buoy number 4 around the Irish coast                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1W Megawatt                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DECD Organisation for Economic Co-Operation and<br>Development                         | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ES Primary Energy Supply                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HES Pumped hydroelectric energy storage                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P Power Plant                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EAI Sustainable Energy Authority of Ireland                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SO Transmission System Operator                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Wh Terawatt hour                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AT Value added tax                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vh Watt-hour                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| bl Barrel                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| n metre                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| second                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                        | W       Kilowatt         Wh       Kilowatt hour         Kilogram       Kilogram         €       Million Euro         2       Data buoy number 2 around the Irish coast         4       Data buoy number 4 around the Irish coast         W       Megawatt         ECD       Organisation for Economic Co-Operation an Development         ES       Primary Energy Supply         HES       Pumped hydroelectric energy storage         P       Power Plant         AI       Sustainable Energy Authority of Ireland         GO       Transmission System Operator         Wh       Terawatt hour         AT       Value added tax         Phoure       Barrel         metre       Matt-hour |

## 2 Why EnergyPLAN?

It is difficult to choose a suitable energy tool at the beginning of a study due to the wide range of different energy tools available, which are diverse in terms of the regions they analyse, the technologies they consider, and the objectives they fulfil. In addition, it can be very difficult to define what exactly the primary focus of any research will become. Therefore, the first step which I would advise, is defining an overall objective for any modelling work which you intend to do. For example, the underlying objective in my work was:

## "To identify how Ireland could integrate the most renewable energy into its energy system".

After establishing a core objective, it is then possible to rate various different energy tools against one another based on their capabilities of fulfilling this objective. To aid this comparison, an overview of all the energy tools I considered, as well as many others can be found in [2, 3]. Hence, these will not be discussed in detail here, but instead the only reasons I chose EnergyPLAN are outlined below:

- EnergyPLAN is a user-friendly tool designed in a series of tab sheets and hence the training period required usually varies from a few days up to a month, depending on the level of complexity required. Also in relation to this point, there is online training available from the EnergyPLAN website so it is relatively straight forward to experience a typical application of the software [1].
- 2. The EnergyPLAN software is free to download [1].
- 3. EnergyPLAN considers the three primary sectors of any national energy system, which includes that electricity, heat, and transport sectors. As fluctuating renewable energy such as wind power becomes more prominent within energy systems, flexibility will become a vital consideration. One of the most accessible methods of creating flexibility is the integration of the electricity, heat, and transport sectors using technologies such as combined heat and power (CHP) plants, heat pumps, electric vehicles, and hydrogen. Therefore, for certain objectives, this can be an essential issue for a study.
- 4. EnergyPLAN was previously used to simulate a 100% renewable energy system for Denmark [4-8].
- 5. The results developed using EnergyPLAN are constantly being published within academic journals. A number of energy tool developers publish their results in private reports for those who fund their investigations. However, in order to obtain my PhD qualification I needed to publish my work in academic journals. Therefore, it was fortunate and important that EnergyPLAN was being used for this purpose.
- 6. The quality of journal papers being produced using EnergyPLAN was a key attraction. Below are a few examples of the titles I recorded before contacting Prof. Henrik Lund about EnergyPLAN:
  - a. Energy system analysis of 100% renewable energy systems The case of Denmark in years 2030 and 2050 [7].
  - b. The effectiveness of storage and relocation options in renewable energy systems [9].
  - c. Large-scale integration of optimal combinations of PV, wind and wave power into electricity supply [10].
  - d. Large-scale integration of wind power into different energy systems [11].

After reading these journal papers and observing the contribution that the results made to the Danish energy system, it was evident that similar research would benefit the Irish energy system.

7. Finally and possibly the most important reason for using EnergyPLAN, was Prof. Henrik Lund's supportive attitude when I approached him about using EnergyPLAN. My progress has been accelerated beyond expectation due to the support and guidance from both Prof. Henrik Lund and Associate Prof. Brian Vad Mathiesen. This is an essential aid when embarking on research, especially when learning new skills and meeting deadlines at the same time.

These are only some of reasons for using the EnergyPLAN tool. A more detailed overview of EnergyPLAN can be found in [1], while a more thorough comparison with other energy tools can be found here [2, 3].

## 3 Collecting the Required Data

After choosing any energy tool for a study, it is crucial that you ensure that the tool is capable of accurately modelling your particular application. Therefore, the first step is to create a reference model of an historical year. In my first study, I chose the 2007 Irish energy system as my reference and hence this report is primarily based on this application. However as I was making the reference model, I felt that a lot of questions could have been answered if I simply knew where to begin looking for the data required. Therefore, this document simply discusses where I found the information I needed to complete my reference model of the 2007 Irish energy system. I hope that this will enable future EnergyPLAN users to collect their data more effectively.

*Important:* There are important points below that need to be considered when reading the following chapters:

- 1. I have discussed a number of inputs in great detail and others only briefly. This reflects the effort required and the assumptions made in order to get the data and <u>not</u> the importance of the data.
- 2. When you download the EnergyPLAN model, a number of distributions are included with it. In a lot of studies these distributions will suffice as the results from the EnergyPLAN model may not be greatly improved by a more accurate distribution. Therefore, it is worth analysing the effects of various distributions on your results before allocating large periods of time to creating distributions.

This chapter is divided into two primary sections:

- 1. Technical Data
- 2. Economic Data

The order is used as this is a typical modelling sequence that can be used when simulating an energy system. Firstly, a reference model is created to ensure that EnergyPLAN can simulate the energy system correctly. The reference model does not require economic inputs, as it is usually only the technical performance that is compared. After creating the reference model using the technical inputs, then the fuel, investment, and O&M costs can be added to carry out a socio-economic analysis of the energy system. Therefore, alternatives can now be created and compared in relation to their technical performance and annual operating costs. Finally, the external electricity market costs can be added so a market simulation can be completed in EnergyPLAN: this enables you to identify the optimum performance of the energy system from a business-economic perspective, rather than a technical perspective. However, typically the aim when creating future alternatives is to identify how the optimum business-economic scenario, can be altered to represent the optimum socio-economic scenario (i.e. by adjusting taxes) as this is the most beneficial for society.

Finally, before discussing the data that was collected, it is important to be aware of the type of data that EnergyPLAN typical requires. Usually, the EnergyPLAN model requires two of the following technical parameters:

- 1. The total annual production/demand (i.e. TWh/year).
- 2. The capacity of the unit installed (i.e. MW).
- 3. The hourly distribution of the total annual production/demand, which have the following criteria:
  - a. There must be 8784 data points, one for each hour.
  - b. The data points are usually between 0 and 1, representing 0-100% of production/demand as shown in Figure 1<sup>1</sup>. However, if a distribution is entered with values greater than 1, EnergyPLAN will automatically index the distribution: This is done by dividing each entry in the distribution by the maximum value in the distribution. This means that historical hourly data can be directly used in EnergyPLAN for a distribution. An example, displaying how an index is created, and also how an index is used is shown in Table 3-1. One exception is the price distribution under the 'Regulation' tab, which does not normalise the inputs.
  - c. The distribution is inputted as a text file and stored in the "Distributions" folder.

<sup>&</sup>lt;sup>1</sup> This does not apply to the price distributions. For the price distribution, the actual values provided in the distribution are used.

The distribution is simply adjusted to reflect the total annual production/demand. For example, in Figure 2, the distributions for three separate demands are shown, which show how the distribution in Figure 1 is manipulated to model the total demand.

| Time | Output from a 100 MW | Index I  | Data    | Using Indexed Data to Simulate a 400 |     |  |  |  |  |
|------|----------------------|----------|---------|--------------------------------------|-----|--|--|--|--|
| (h)  | Wind Farm (MW)       | Fraction | Decimal | Wind Farı                            | n   |  |  |  |  |
| 1    | 20                   | 20/100   | 0.2     | 0.2*400                              | 80  |  |  |  |  |
| 2    | 30                   | 30/100   | 0.3     | 0.3*400                              | 120 |  |  |  |  |
| 3    | 60                   | 60/100   | 0.6     | 0.6*400                              | 240 |  |  |  |  |
| 4    | 100                  | 100/100  | 1.0     | 1.0*400                              | 400 |  |  |  |  |
| 5    | 80                   | 80/100   | 0.8     | 0.8*400                              | 320 |  |  |  |  |
| 6    | 40                   | 40/100   | 0.4     | 0.4*400                              | 160 |  |  |  |  |

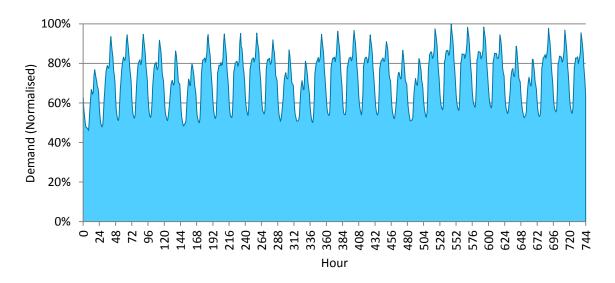
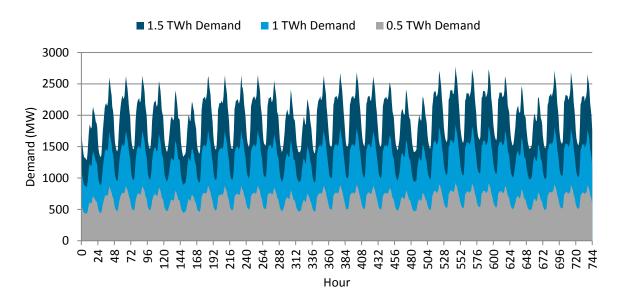
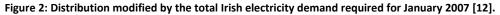





Figure 1: Distribution of Irish electricity demand for January 2007 [12].





6

## 3.1 Technical Data Required

EnergyPLAN simulates a single year in hourly time-steps. To create an initial model, I picked the year 2007 as it was the most recent when I started gathering my data.

To explain where I got my data, I will discuss each tab within the EnergyPLAN model separately. The 'Frontpage' tab displayed in Figure 3 illustrates a flow diagram of the EnergyPLAN model, indicating how all the various components of the energy system interact with one another. The 'Input' tab is used to describe the parameters of the energy system in question. The 'Cost' tab is used to input the costs associated with the energy system being investigated and the 'Output' tab is used to analyse the results of your investigation. Finally, the 'Settings' tab enables the user to change the scale of the units in the program.

Below I will discuss in detail where I got the information for the 'Input' tab and the 'Cost' tab, as these account for the majority of data required.

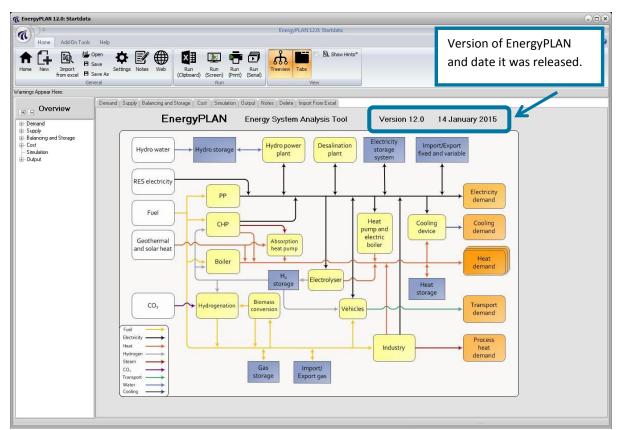



Figure 3: Frontpage of the EnergyPLAN tool.

## 3.2 Demand Tab

Below is a brief description of the data I used under the 'Input' tab in my model. It is worth noting that the data required for EnergyPLAN is usually generic data that can be obtained in most OECD<sup>2</sup> countries. Therefore, if I was able to obtain the data for the Irish energy system, it is likely to be available in other countries also. Also note that each sub-heading in this section represents data required for a different tab in EnergyPLAN.

The first piece of information that you should try to source is the 'Energy Balance' for your country or region. The Irish Energy Balance was completed by the Irish energy agency called the Sustainable Energy Authority of Ireland (SEAI) [13]. The Energy Balance indicates the energy consumed within each sector of the energy system

<sup>&</sup>lt;sup>2</sup> Organisation for Economic Co-Operation and Development: <u>http://www.oecd.org</u>.

as displayed Figure 4 and Appendix 7.1. The International Energy Agency (IEA) completed two reports on energy balances in 2008: one with the Energy Balances for each of the OECD countries [14] and one with the Energy Balances for a number of non-OECD countries [15]. These documents must be purchased so I have not obtained a copy. However, this is one possible source for an energy balance of your energy system.

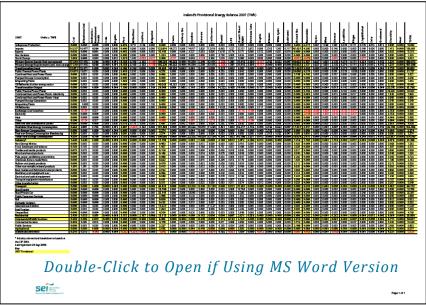



Figure 4: Irish energy balance for 2007: see Appendix 7.1 and reference [16].

The Energy Balance document proved to be the most useful source of information for my investigation. However, it is important to check the accuracy of the data in this document, as the figures can sometimes be based on estimates.

Secondly, meteorological data also proved very important when predicting renewable energy production. Meteorological data can usually be obtained from a national meteorological association. However, another option is to use a program called 'Meteonorm' [17]. This program has gathered data from a number of meteorological stations around the world, which can be accessed using a very intuitive user-interface. However, the program is not free so you will need to decide how important meteorological data will be before purchasing it<sup>3</sup>. Even if you use this program, it could also be useful to compare the data in the software to actual measurements from a weather station to ensure that the program is providing accurate data. There is also some free meteorological data available from this website: <u>www.wunderground.com</u>.

<sup>&</sup>lt;sup>3</sup> Data from meteorological stations may or may not be free so it is worth enquiring about this also.

| ergyPLAN 12.0: Startdata            |                                                                                                                   |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                     | Energy/PLAN12.0: Startdata                                                                                        |
| Home Add-On Tools                   | Hep                                                                                                               |
|                                     | 0en 🂠 📝 🌐 🕼 😰 🖶 🗗 🔥 🖬 🔍 Show Hints*                                                                               |
|                                     | Save<br>Settings Notes Web Run Run Run Run Treeview Tabs                                                          |
|                                     | Save As Colling Total (Clipboard) (Screen) (Print) (Serien)                                                       |
| ngs Appear Here:                    |                                                                                                                   |
|                                     | Demand Supply Balancing and Storage Cost Simulation Output Notes Delete Import From Excel                         |
| Overview                            | Electricity Heating Cooling Industry and Fuel Transport Water                                                     |
| Demand                              |                                                                                                                   |
| <mark>Electricity</mark><br>Heating | Electricity Demand and Fixed Import/Export                                                                        |
| Cooling                             | Electricity demand: 20 TWh/year Change distribution Hour_electricity.txt                                          |
| Industry and Fuel<br>Transport      | Electric healing ([Fincluded] - 0 TV/h/year Subtract electric healing using distribution from 'individual' window |
|                                     | Electric cooling (IF included) _ 0 TW/h/year Subtract electric cooling using distribution from 'cooling' window   |
| alancing and Storage                | Elec. for Biomass Conversion 0.00 T-Wh/year (Transfered from Biomass Conversion TabSheet)                         |
| ost<br>imulation                    | Elec. for Transportation 0.00 TWh/year (Transfered from Transport TabSheet)                                       |
| Output                              | Sum (excluding electric heating and cooling) 20.00 TWh/year                                                       |
|                                     |                                                                                                                   |
|                                     | Electric heating (individual) 0.00 TWh/year                                                                       |
|                                     | Electricity for heat pumps (individual) 0,00 Tw/h/year                                                            |
|                                     | Electric cooling 0,00 Twh/year                                                                                    |
|                                     | Flexible demand (1 day) 0 TW/hypear Max effect 1000 MW                                                            |
|                                     | Flexible demand (1 week) 0 Tw/hybear Max effect 1000 M/w Export                                                   |
|                                     | Flexible demand (4 weeks) 0 TWh/year Max-effect 1000 MW fixed and                                                 |
|                                     | Fixed Import/Export 0 Twh/vear Change distribution Hour_Tysklandsexport.bt                                        |
|                                     | Electricity                                                                                                       |
|                                     | Total electricity demand* 20.00 Tv/h/year demand                                                                  |
|                                     |                                                                                                                   |
|                                     |                                                                                                                   |
|                                     |                                                                                                                   |
|                                     |                                                                                                                   |
|                                     |                                                                                                                   |
|                                     |                                                                                                                   |
|                                     |                                                                                                                   |
|                                     |                                                                                                                   |

Total electricity demand was obtained from the Irish transmission system operator (TSO), EirGrid [13], and the Energy Balance document. Imported and Exported electricity was also obtained from the TSO in Ireland.

Twenty-four European countries are involved in the "European Network of Transmission System Operators for Electricity" (ENTSO-E), which provides a lot of detailed data about the production and consumption of electricity. A list of the countries in the ENTSO-E is available from [18], and the data can be obtained from [19]. The data includes the following:

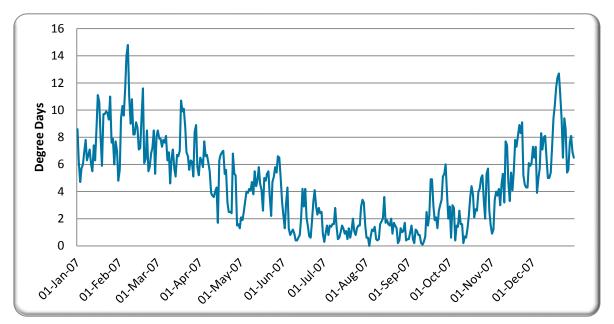
- Statistics •
- **Production Data** •
- **Consumption Data** •
- **Exchange Data** •
- Miscellaneous Data •
- **Country Data Packages** •

Therefore, this is a useful source of information if you are modelling a European region.

## 3.2.2 Heating

| 🌾 EnergyPLAN 12.0: Startdata                                         |                                                                                                                                                                                                                                                            | _ <b>.</b> |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                      | Energy/PLAN 12.0: Startdata                                                                                                                                                                                                                                |            |
| Home Add-On Tools                                                    | Hep                                                                                                                                                                                                                                                        | 0          |
| Home New Import<br>from excel 8 Se                                   | Save As The settings Notes Web Run                                                                                                                                                                                     |            |
| Warnings Appear Here:                                                |                                                                                                                                                                                                                                                            |            |
| Overview     Demand     Electricity                                  | Demand Supply Balancing and Storage Cost Smulation Output Notes Delete Import From Excel  Electricity Heating Cooling Industry and Fuel Transport Water  Total Heat Demand (Individual plus Distinct Heating) 17,50                                        |            |
| <mark>Heating</mark><br>Cooling                                      |                                                                                                                                                                                                                                                            |            |
| Industry and Fuel<br>Transport<br>Water                              | Individual Heating:                                                                                                                                                                                                                                        |            |
| Supply     Balancing and Storage                                     | Twh/year Fuel Consumption Efficiency Heat Efficiency Capacity Electricity Heat Input Output Themal Demand Electric Limit Production Storage' Share' Input Output                                                                                           |            |
| <ul> <li>⊕- Cost</li> <li>— Simulation</li> <li>⊕- Output</li> </ul> | Distribution: Heat<br>Hour_distribute. Heat<br>Hour_distribute.                                                                                                                                                                                            |            |
|                                                                      |                                                                                                                                                                                                                                                            |            |
|                                                                      | 01 boller: 0 0,00 0,8 0,00 0 1 0 0,00 0,00 0,00 0,                                                                                                                                                                                                         |            |
|                                                                      | Ngas boler : 0 0.00 0.9 0.00 0 1 0 0.00                                                                                                                                                                                                                    |            |
|                                                                      | Biomass boler: 0 0.00 0.7 0.00 0 1 0 0.00 Solar terminal                                                                                                                                                                                                   |            |
|                                                                      |                                                                                                                                                                                                                                                            |            |
|                                                                      | Ngas micro CHP:         0.00         0.5         0         0.3         1         0.00         1         0         0.00           Biomass micro CHP:         0.00         0.5         0         0.3         1         0.00         1         0         0.00 |            |
|                                                                      | Heat Pump : 0 3 1 0.00 0 1 0 0.00 (50km                                                                                                                                                                                                                    |            |
|                                                                      | Electric heating: 0 1 0.00 0 1 0 0.00                                                                                                                                                                                                                      |            |
|                                                                      | Total Individual: 0,00 0,00 0,00 0,00 0,00 0,00                                                                                                                                                                                                            |            |
|                                                                      | District Heating:                                                                                                                                                                                                                                          |            |
|                                                                      | Group 1: Group 2: Group 3: Total: Distribution:                                                                                                                                                                                                            |            |
|                                                                      | Network Inster 02 0.15 0.1                                                                                                                                                                                                                                 |            |
|                                                                      | Heat Demand: 0.00 8:50 9:00 17:50                                                                                                                                                                                                                          |            |
| l                                                                    |                                                                                                                                                                                                                                                            |            |

For my initial energy model I did not have to include any district heating, since there are currently no largescale installations in Ireland.


#### 3.2.2.1 Heat Distribution

It was very difficult to predict the annual heat distribution for the entire population of Ireland. In order to estimate it, I used 'Degree Day' data from Met Éireann, the Irish meteorological service [25].

There are Heating Degree Days (HDD) and Cooling Degree Days (CDD). As their title suggest, the HDD indicate the level of heating required on a given day, and the CDD indicate the level of cooling required on a given day. In Ireland, cooling is not usually necessary due to the climate and therefore, the HDD was used to estimate the amount of heat required.

Heating Degree Days work as follows: The temperature within a building is usually 2-3°C more than outside, so when the outside temperature is 15.5°C, the inside of a building is usually 17.5°C to 18.5°C. Therefore, once the temperature drops below this 15.5°C outside-temperature setpoint, the inside temperature drops below 17.5/18.5°C and the space heating within a building is usually turned on. Note that this 15.5°C setpoint is specifically for Ireland and it can change depending on a number of factors such as the climate and the typical level of house insulation [36]. A full explanation about the calculation and application of degree data can be obtained from [36, 37].

For the heat demand, an annual distribution with a resolution of 1 hour is required, but the Degree Day data obtained from various weather stations around Ireland is only recorded on a daily basis, as seen in Figure 5. Therefore, this 1 day data had to be converted into hourly readings. To do this, I took a daily cycle from a similar study completed on Denmark in [7] and applied it to the Irish distribution with a program I developed in MATLAB [31], which is displayed in Figure 6. As district heating is common in Denmark, hourly data could be



easily obtained over a 24 hour period and it was assumed that Ireland would have a similar daily distribution in its heat demands as Denmark.

Figure 5: Degree Day data from Belmullet meteorological station in Mayo, Ireland [25].

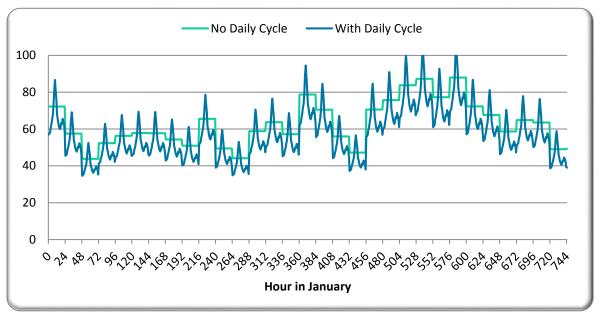



Figure 6: Individual heat distribution for January 2007 in Ireland (Hourly).

Finally, by obtaining the HDD data, the level of heat required each day within a building can be estimated. However, this only considered the space heating distribution and not the hot water distribution. Therefore, a heat distribution which accounted for both space heating and hot water demand had to be constructed. For the summer months, it was assumed that space heating would not be required: it was assumed that the heat absorbed by the building during warm temperatures, and also the building's occupants, would keep the building warm during colder temperatures. Therefore, during the summer hot water is the only heating demand. It was also assumed that hot water is a constant demand each day for the entire year, as people tend to use a consistent amount of water regardless of temperature or time of year. The BERR in the UK completed a report in relation to domestic hot water and space heating, which indicated that the ratio of space heating to hot water heating in the home is 7:3 [38]. Therefore, as seen in Figure 7, for the heat distribution a 30%

constant bandwidth was placed at the base representing hot water demand, and a 70% demand was placed on top (based on Degree Day data) representing the space heating requirements. Figure 7 represents the heat distribution constructed for modelling the heat demand within the Irish energy system.

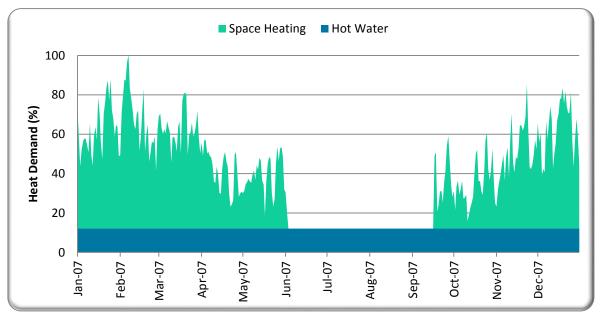



Figure 7: Individual heat distribution for Ireland.

## 3.2.2.2 Fuel Consumption and Efficiency of Boilers

The fuel consumed for residential heating can be obtained from the Energy Balance. For the boiler efficiencies, I consulted the Building Energy Rating documentation provided by the Irish energy agency, SEAI [39]. This documentation is used by assessors to complete energy ratings for homes in Ireland. Therefore, the documentation gave the typical type and efficiency of different domestic boilers used in Ireland. This could be available in other countries also, or if not, the efficiencies within this documentation could be applied to other applications.

## 3.2.2.3 Electric Heating

Electric heating demand can also be difficult to quantify as it is usually documented in conjunction with the heating demand and not as a separate entity. From a report completed by the Irish energy agency, SEAI, it was found that 14% of all domestic electricity is used for space heating and 23% for hot water [40]. In a separate report by SEAI, it was found that 12% of commercial electricity was used for heating purposes [41]. Therefore, I used these figures to calculate the electric heating demand in Ireland i.e. (37% of domestic electricity plus 12% of commercial electricity).

#### 3.2.2.4 Solar Distribution

There are two types of solar thermal in the EnergyPLAN model: solar thermal that contributes to district heating and solar thermal for individual households. At present, only individual solar thermal energy is used in Ireland and hence it is discussed here under the individual's heating demands. The inputs required for the EnergyPLAN model are the:

- 1. The total annual solar thermal production.
- 2. Hourly distribution of the solar thermal production over the year.
- 3. Solar thermal share.

The total solar production in Ireland for 2007 was got from the 2007 Energy Balance [16]. For the distribution, an attempt was made to obtain the hourly power output from a solar panel for an existing installation<sup>4</sup> in Ireland, but this could not be obtained. As discussed previously, the solar radiation available in Ireland and Denmark is very similar (see Table 3-3) and hence, a solar thermal output curve which was constructed for Denmark was used. This solar thermal distribution was created by a Danish energy consultancy firm, PlanEnergi [42], for the 2030 Danish Energy Plan [7, 8]. The distribution gives the production from an individual solar thermal installation of 4.4 m<sup>2</sup> during a typical Danish year. The energy produced from the solar panel is based on a daily consumption demand of 150 litres, which needs to be heated from 10°C to 55°C in combination with a 200 litre storage tank. The 4.4 m<sup>2</sup> represents a solar thermal installation designed for hot water and some contribution to space heating.

### 3.2.2.5 Solar Share

The solar share is the percentage of houses that have a solar panel installed: To estimate this in Ireland, I contacted the Irish energy agency, SEAI [13], who told me that there was 33,600 m<sup>2</sup> of solar thermal panels installed in Ireland. A typical solar installation in Ireland uses 5 m<sup>2</sup>, therefore it was assumed that there are approximately 6,720 solar installations in Ireland. From the 2006 census in Ireland, it was stated that there are 1,469,521 homes in Ireland [43]. Therefore, it was concluded that there is a solar thermal installation in 0.45% (6720/1469521) of Irish houses.

### 3.2.2.6 Solar Input

As stated above, I found the total solar energy utilised from the Irish Energy Balance [16]. The solar input and solar share can be adjusted if necessary to match the solar production with the value stated in the Energy Balance.

<sup>&</sup>lt;sup>4</sup> Solar-thermal output can be found by measuring the inlet and outlet temperatures of the collector, and also the flow rate.

## 3.2.3 Cooling



There is currently no cooling load in Ireland so no data was required for the Irish reference model. Note that the heat demand under the cooling tab is for absorption cooling.

## 3.2.4 Industry

| 🐔 EnergyPLAN 12.0: Startdata |                                                      | _ <b>.</b> . × |
|------------------------------|------------------------------------------------------|----------------|
|                              | EnergyPLAN 12.0: Startdata                           |                |
| Home Add-Un Loois            |                                                      | 0              |
| ♠ 👍 風 🗄                      |                                                      |                |
| Home New Import              | Save Settings Notes We Run Run Run Treeview Tabs     |                |
|                              | Lappoerty (Screen) (Printy (Serier) View             |                |
| Warnings Appear Here:        |                                                      |                |
| - Overview                   |                                                      |                |
|                              |                                                      |                |
| Electricity                  | Industry and Other Fuel Consumption                  |                |
| Cooling                      |                                                      |                |
|                              | Twh/year Industry Various" Fuel Losses" Distribution |                |
| Water                        | Dowl D D D                                           |                |
| Balancing and Storage        |                                                      |                |
| Simulation                   | 000 0 0                                              |                |
| ie- Output                   | Ngas 0 0 0 Ngas const.ht                             |                |
|                              |                                                      |                |
|                              | Biomass U U U                                        |                |
|                              |                                                      |                |
|                              |                                                      |                |
|                              |                                                      |                |
|                              |                                                      |                |
|                              | Fuel Fuel heat heat                                  |                |
|                              | demand                                               |                |
|                              |                                                      |                |
|                              |                                                      |                |
|                              |                                                      |                |
|                              |                                                      |                |
|                              |                                                      |                |
|                              |                                                      |                |
|                              |                                                      |                |
|                              |                                                      |                |
|                              | J                                                    |                |

The quantity of each fuel-type consumed within industry can be found in the Energy Balance [16]. The 'Various' input is only used when a consumption cannot be specified anywhere else or may need to be analysed on its own i.e. gas consumption for offshore drilling.

#### 3.2.5 Transport

| 🌾 EnergyPLAN 12.0: Startdata                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <b>•</b> × |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                                                                                                                      | EnergyPLAN 12.0: Startdata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| Home Add-On Tools                                                                                                                                                                                    | Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0            |
|                                                                                                                                                                                                      | ave Settings Notes Web Run Run Run Run Run revew Tabs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| Ger                                                                                                                                                                                                  | eral Run View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| Warnings Appear Here:                                                                                                                                                                                | Demand Supply Balancing and Storage Cost Simulation Output Notes Delete Import From Excel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Ut to         Demand         - Electricity         - Heating         - Hodaty and Fuel         - Mature         Supply         Balancing and Storage         Cont         - Simulation         Dupot | Electricity Heating Coding Industry and Fuel Transport Water         TV My/seri       Fossi       Biofuel       Water       Synthetic Fuel       Distribution       Help to design inputs         JP (Me Fuel)       0       0       0.00       0.00       Petrol       0       0.00         Diesel       0       0       0.00       0.00       Petrol       0       0.00         Ngar* (Grid Gas)       0       0.00       0.00       Help to design inputs         LPG       0       0.00       0.00       Help to design inputs         LPG       0       0.00       0.00       Help to design inputs         LPG       0       0.00       Help to design inputs       Help to design inputs         LPG       0       0.00       Help to design inputs       Help to design inputs         LPG       0       0.00       Help to design inputs       Help to design inputs         LPG       0       0.00       Help to design inputs       Help to design inputs         LPG       0       0.00       Help to design inputs       Help to design inputs         LPG       0       Durpe       Heur_US2001_transportation_BEV_H2.M       Heur_US2001_transportation_BEV_H2.M         Electricity (Entrotice to Gri |              |
| 1                                                                                                                                                                                                    | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |

The amount of fuel used for transport is available by fuel type, including electricity, from the Energy Balance [16].

#### 3.3 Supply Tab

#### 3.3.1 Heat and Electricity

There is currently no large-scale CHP plants for public district heating systems in Ireland, so only industrial CHP was required for the heat and electricity tabsheet.

#### 3.3.1.1 Industrial CHP: Energy Production

In order to quantify the capacity of industrial CHP, I had to contact the statistics department within the Irish energy agency, SEAI, who had the breakdown of CHP plants at their disposal. They could identify from their records how much CHP in Ireland was industrial and how much was dispatchable. From this they could also provide the amount of electricity and heat that was produced from both industrial and dispatchable CHP.

### 3.3.1.2 Industrial CHP: Distribution

Since the industrial CHP in Ireland was not controlled by the TSO, I used the 'const.txt' distribution for Industrial CHP, which means the output was simply constant. It is considered the best proxy for modelling a production that cannot be controlled.

#### 3.3.2 Electricity Only

| 🐔 EnergyPLAN 12.0: Startdata                                                       |                                                                                                                                                                                                                                                             | _ <b>X</b> |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                    | EnergyPLAN 12.0: Startdata                                                                                                                                                                                                                                  |            |
| Home Add-On Tools                                                                  | Hep                                                                                                                                                                                                                                                         | 0          |
| Home New Import<br>from excel B sa                                                 | ave As Votes Veb Run                                                                                                                                                                                                    |            |
| Warnings Appear Here:                                                              |                                                                                                                                                                                                                                                             |            |
| Overview                                                                           | Demand Supply Balancing and Storage Cost Simulation Output Notes Delete Import From Excel                                                                                                                                                                   |            |
|                                                                                    | Heat and Electricity Electricity Only Theat Only Thermal Plant Fuel Distribution Waste Liquid and Gas Fuels C02                                                                                                                                             |            |
| Demand     Electricity     Heating     Cooling     Industry and Fuel     Transport | Central Power Plants         Capacity         Efficiency         Correction Factor:         Annual production:         Distributions         Storage for Dammed Hydro           MW-e         Percent         TWh/year         Storage         0         GWh |            |
| Water                                                                              | PP1 (CHP3 Condensing Mode)* 4000,00 n/a* Storage difference: 0                                                                                                                                                                                              |            |
| <ul> <li>Supply</li> <li>Heat and Electricity</li> </ul>                           | Condensing PP2         0         0.45         n/a*         Pump Back Capacity         0         MW-e           Pump Back Efficiency         0.9         Percent         Percent         Percent                                                             |            |
| Electricity Only<br>Heat Only                                                      | Nuclear 0 0.33 1 0.00 Change const.bt                                                                                                                                                                                                                       |            |
| Thermal Plant Fuel Distributi<br>Waste                                             | Geothermal 0 0 1 0,00 Change const.bt                                                                                                                                                                                                                       |            |
| E- Liquid and Gas Fuels                                                            | Dammed Hydro Water supply* 0 Change Hour_wind_1.txt                                                                                                                                                                                                         |            |
|                                                                                    | Dammed Hydro Power 0 0.33 0.00 (Estimated)"                                                                                                                                                                                                                 |            |
| ie- Output                                                                         | RES electricity                                                                                                                                                                                                                                             |            |
|                                                                                    | Intermittent Renewable Electricity         Estimated                                                                                                                                                                                                        |            |
|                                                                                    | Estimated Post                                                                                                                                                                                                                                              |            |
|                                                                                    | Renewable         Capacity:         Stabilization         Distribution profile         Production         Correction           Energy Source         MW         share         TWh/year         factor         production                                    |            |
|                                                                                    | Wind • 1000 0 Change hou_wind_1.txt 2.07 0 2.07                                                                                                                                                                                                             |            |
|                                                                                    | Photo-Volaic + 500 0 Change Hour_solar_prod1 0.35 0 0.35                                                                                                                                                                                                    |            |
|                                                                                    | Offshore Wind - 0 0 Change hour_wind_2.bt 0.00 0 0.00                                                                                                                                                                                                       |            |
|                                                                                    | River Hydro • 0 0 Change const.bst 0,00 0 0,00                                                                                                                                                                                                              |            |
|                                                                                    | Tidal • 0 0 Change hour_tidal_power 0.00 0 0.00                                                                                                                                                                                                             |            |
|                                                                                    | Wave Power         •         0         0         Change         Hour_wave_200°         0.00         0         0.00                                                                                                                                          |            |
|                                                                                    | CSP Solar Power                                                                                                                                                                                                                                             |            |
|                                                                                    |                                                                                                                                                                                                                                                             |            |

#### 3.3.2.1 Power Plants

For power plants, the first parameter required is the total capacity installed, which I got from the Irish TSO [13]. If necessary, it is possible to divide the power plants into two categories: condensing and PP2. The PP2 category is usually used if there is a highly contrasting plant mix on the system i.e. if there is one group of plants with a low efficiency and are expensive, but another group of plants which have a high efficiency and are cheap. Therefore, the PP2 can be suitable for some energy systems.

In addition to the PP capacity, you also need to find the total fuel consumed by the power plants, which is usually available in the energy balance. For example, in the Irish energy balance, you can see that there is a category titled "Public thermal power plants", which can be broken down by coal, oil, gas, and biomass. These values are entered into the "Distribution of Fuel" grid. If you put all of the PP capacity into the "condensing" section, then all of the fuel consumption needs to be in the PP row of the grid. However, if you put some plants in PP and some other plants in PP2, then the fuel will need to be split across these rows, in a way that reflects this divide.

Finally, you will also need the efficiency of the power plants. As mentioned, the total fuel consumption for each type of power plant can be obtained from the energy balance. Using the energy balance document I could calculate the efficiency of all the condensing plant,  $\eta_{COND}$ , using the total fuel input,  $F_{IN}$  (Wh), and total electricity generated,  $E_{OUT}$  (Wh),

$$\eta_{COND} = \frac{E_{OUT}}{F_{IN}} \tag{1}$$

It was difficult to obtain the efficiencies of the individual condensing plant as it was "commercially sensitive information". However, I obtained a breakdown of fuel inputted into the Irish condensing plants, see Figure 8, once again from the Irish energy agency SEAI, and used this to calculate the efficiencies for the condensing

plant of different fuel type (using formula 1). For the reference model you will not need to know this: instead all you need to find out is the total fuel consumed by all the power plants, and the total electricity generated by all the power plants (then you can calculate the condensing efficiency). However, the efficiency of the power plants under each fuel type will be necessary when simulating future alternatives: for example, if you wanted to simulate coal power plants being replaced by natural gas power plants as illustrated in Table 3-2.

#### Table 3-2

| How individual power plant efficiencies alter the overall "Condensing" power plant efficiency. |         |             |            |               |                |            |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|---------|-------------|------------|---------------|----------------|------------|--|--|--|--|--|--|
|                                                                                                | Coal PP | Natural Gas | Coal PP    | Natural Gas   | Total Capacity | Overall    |  |  |  |  |  |  |
|                                                                                                | (MW)    | PP (MW)     | Efficiency | PP Efficiency | (MW)           | Efficiency |  |  |  |  |  |  |
| Reference                                                                                      | 1000    | 2000        | 0.4        | 0.5           | 3000           | 0.466      |  |  |  |  |  |  |
| Alternative 1                                                                                  | 500     | 2500        | 0.4        | 0.5           | 3000           | 0.484      |  |  |  |  |  |  |
| Alternative 2                                                                                  | 0       | 3000        | 0.4        | 0.5           | 3000           | 0.500      |  |  |  |  |  |  |

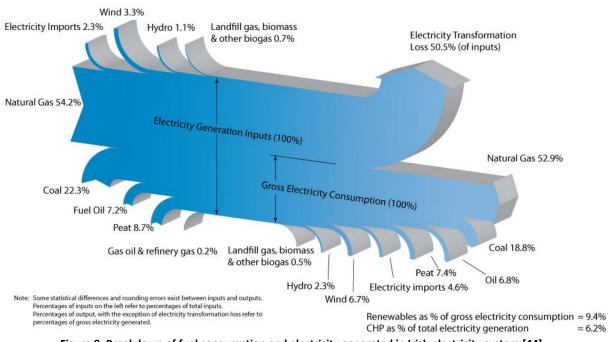



Figure 8: Breakdown of fuel consumption and electricity generated in Irish electricity system [44].

## 3.3.2.2 Renewable Electricity

In order to define the energy available from a renewable energy resource in your energy system, you need to define five major features:

- 1. The type of renewable energy in question.
- 2. The installed capacity of the renewable resource.
- 3. The distribution profile (hourly for one year).
- 4. The stabilisation share.
- 5. The correction factor.

Parameters 1-3 are reasonably intuitive and have been discussed in detail in at the start of section 3. Therefore, I will only recap on the 'stabilisation share' and the 'correction factor' here. So, just to repeat from the EnergyPLAN user manual [1], the stabilisation share is the percentage (between 0 and 1) of the installed capacity of the renewable resource that can contribute to grid stability i.e. provide ancillary services such as

voltage and frequency regulation on the electric grid. At present renewable energy technologies, with the exception of hydro plants with storage, cannot help regulate the grid. Therefore, the stabilisation share will be set to 0 unless this changes in the future.

Also from the EnergyPLAN user manual [1], the correction factor adjusts the hourly distribution inputted for the renewable resource. It does not change the power output at full-load hours or hours of zero output. However, it does increase the output at all other times. This can be used for a number of different reasons. For example, future wind turbines may have higher capacity factors, and thus the same installed wind capacity will produce more power.

### **Onshore Wind**

I obtained the installed wind capacity and the hourly wind output for 2007 from the Irish TSO. The stabilisation factor was inputted as 0 because wind power does not contribute to grid stabilisation. Also, the correction factor was inputted as 0 because the installed wind capacity and the distribution used generated the expected annual wind energy. Otherwise, the correction factor would need to be adjusted until the wind production calculated by the model was the same as the actual annual production.

### **Offshore Wind**

There was very little historical data available for offshore wind in Ireland. There is currently only one offshore wind farm constructed, which is located at Arklow Banks near County Wicklow. This wind farm is using a new wind turbine developed by GE Energy (The General Electric Company), hence they will not release any information in relation to the power generated from the turbines. The only information I had was the installed capacity of the wind turbines, which was 25.2 MW (7 x 3.6 MW turbines). As a result I used the onshore wind distribution that I had obtained from the Irish TSO, combined with the correction factor in EnergyPLAN. The reason the onshore wind distribution is a good source of data, is because it accounts for the variations in wind speed over the island of Ireland. The only difference between onshore and offshore wind distributions is the higher capacity factor for offshore. This is accounted for by the correction factor in EnergyPLAN. However, after deciding to use the onshore wind distribution, I then had to identify the annual wind energy produced by the 25.2 MW of offshore wind. I calculated this in two different ways.

For the first method I began by obtaining the average annual wind speed at the location of the offshore wind farm (8.75 m/s), using the Irish wind atlas [20]. Then I got an annual offshore wind distribution from a data buoy located close to the offshore wind farm (data buoy M2 from [21]). This data had an average annual wind speed of 7.82 m/s over the year 2007. Therefore, I scaled up this distribution curve until the average annual wind speed was 8.75 m/s (the same as the average wind speed at the offshore wind farm). Finally, I got the power curve for a Vestas V90 wind turbine as seen in Figure 9, and calculated the expected output for a single year from the offshore wind farm. I did not want to use the power curve for the GE Energy wind turbines which were installed at the offshore wind farm, as these are still at the testing stage. At this point I had calculated an expected offshore wind production of 0.11 TWh: using the power curve and wind speed distribution with average annual wind speed of 8.75 m/s. Using the onshore wind distribution, the annual electricity generated from the 25.2 MW offshore wind farm was 0.07 TWh. However, from my calculations, the total electricity that should have been generated was 0.11 TWh. Consequently, I adjusted the 'Correction Factor' (to 0.65) until the total offshore wind output was 0.11 TWh. This accounted for the higher capacity factor of the offshore wind turbines in comparison to the onshore wind turbines. However, if 25.2 MW of wind power produced an annual output of 0.11 TWh, this would give the wind farm a capacity factor of 49.8% which is very high and hence I used a second method also.

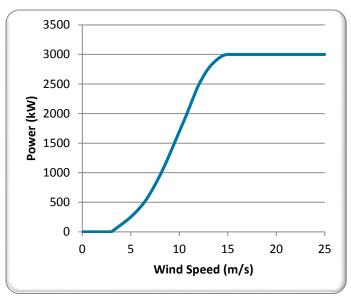



Figure 9: Power curve for a Vestas V90 wind turbine [22].

For the second method, I simply found the average capacity factor for an offshore wind farm in Ireland, which was 40% [23]. I then calculated the annual output from the wind farm, E<sub>Annual</sub>, using the installed wind capacity, PW, and the average capacity factor for an offshore wind farm, CF<sub>w</sub>, as displayed below:

$$E_{Annual} = 8760 P_W C F_W \tag{2}$$

The result was 0.088 TWh from an installed wind capacity of 25.2 MW with a capacity factor of 40%. Therefore, after the offshore wind capacity and onshore wind distribution were inputted into EnergyPLAN, and the correction factor was adjusted (to 0.36) until the annual output was 0.088 GWh. In my opinion, this method is better when simulating alternatives which introduce new large-scale wind capacities, as it uses the average capacity factor. In comparison, the first method is better if you are simulating a specific wind farm as it takes into account the specific wind speeds at that site. As Ireland has very little offshore wind at the moment, but my future alternatives will most likely simulate large-scale offshore wind capacities, I used the second method for my model.

#### **Photovoltaic**

As I could not obtain PV output from Ireland, I used the results obtained from a Danish project called Sol300, as the solar radiation in Denmark is very similar to the solar radiation in Ireland, which is displayed in Figure 10. To ensure the Danish solar resource was similar to the Irish solar resource, global solar radiation data was compared between Denmark and Ireland as seen in Table 3-3. It clearly verifies the similarity and therefore it was considered reasonable to assume that the solar thermal output would be very similar for both Denmark and Ireland.

This Sol300 project involved the installation of grid-connected PV panels on 300 homes in Denmark and the corresponding output was recorded. This output is discussed in [10], and is available in the Distributions folder that comes with the EnergyPLAN model. The name of the distribution is hour\_PV\_eltra2001 and hour\_PV\_eltra2002, for the years 2001 and 2002 respectively.

Work is currently underway to find a relationship between PV output and global solar radiation (as global solar radiation is the most common form of measuring solar radiation at meteorological stations). This section will be updated when this work is completed.

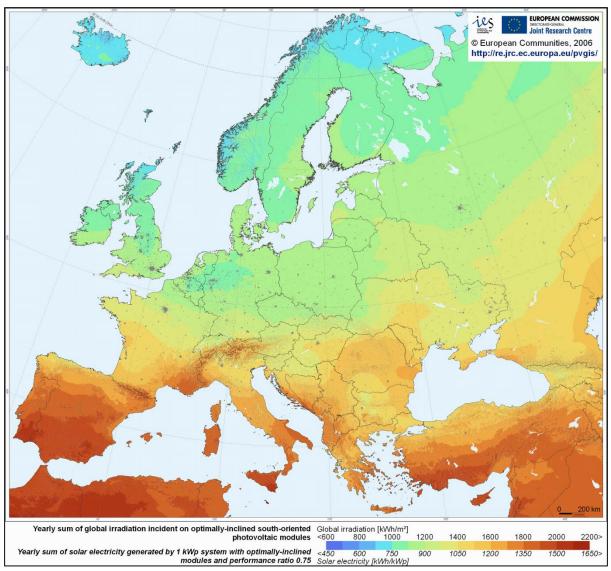



Figure 10: Yearly global irradiation data in Europe [24].

#### Table 3-3

Global solar radiation in Denmark and Ireland for 2007 [25, 26].

| Country | Number of Stations That Provided Data | Average Annual Global Solar Radiation<br>(kWh/m <sup>2</sup> ) |
|---------|---------------------------------------|----------------------------------------------------------------|
| Denmark | 4                                     | 976                                                            |
| Ireland | 7                                     | 989                                                            |

## Tidal

Tidal power is developing rapidly at present. It is very similar to most renewable energy as it must be used at the time of generation. However, the unique characteristic of tidal power is the fact that it can be predicted in on a minute resolution at least three years in advance, if not more. In order to simulate tidal power, I sourced two studies completed in Ireland: one by SEAI (the Irish Energy Authority), titled "Tidal and Current Energy Resources in Ireland" [27], and one by the Department of Communications, Energy and Natural Resources called the "All-Island Grid Study: Renewable Energy Resource Assessment (Workstream 1)" [28]. The first study [27] identified viable tidal energy resource available in Ireland from tidal power (0.92 TWh), and the second study [28] created a power output curve for tidal devices as seen in Figure 11. Using these two inputs it was possible to simulate tidal energy in EnergyPLAN. It is worth noting that these figures were based on 'first-generation tidal devices', so the area investigated came under the following restrictions:

- 1. Water depth between 20m and 40m.
- 2. Sites outside major shipping lanes.
- 3. Sites outside military zones and restricted areas.
- 4. Sites which do not interfere with existing pipelines and cables.
- 5. 12 nautical mile limit offshore.
- 6. Peak tidal velocity greater than 1.5 m/s.

'Second-generation tidal devices' are expected to be developed that can be placed in areas without some of these restrictions (see Figure 12). However, these devices are not expected until 2015 [28].

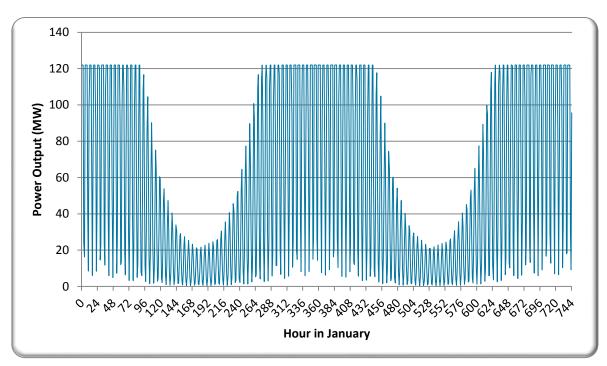



Figure 11: Tidal power output expected in Ireland for the month of January from a 122 MW Tidal Farm [28].

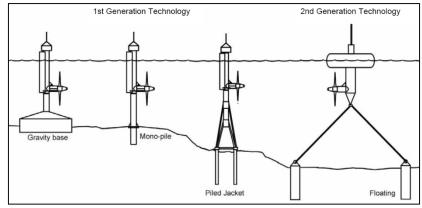



Figure 12: First and Second generation tidal technology [29].

#### Wave Power

I consulted with Jens Peter Kofoed from Aalborg University in order to generate the expected wave power data for my model. During our discussion, it became apparent that the future of wave power is very unclear.

Unlike wind power where the three-bladed turbine has become the primary technology, there will be no standard design for future wave generators. This is due to the fact that wave power depends on two parameters: wave height and wave period. Different wave generators will be used depending on the specific

wave height and period characteristics at a site and hence, it is unlikely that any single wave generator will be the most efficient at all sites.

The most convincing way to predict the wave power contribution for an energy system in the future is to use the output from a wave generator device that is publicly providing a power matrix, such as the Pelamis in Figure 13, the Wave Dragon in Figure 14, and the Archimedes in Figure 15. These power matrices are available to the public and hence can be used in conjunction with wave height and wave period data to predict future wave power.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |        |      |      |      |      |      | Pow  | er per | iod (T | pow, S) |      |      |           |      |          |      |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|------|------|------|------|------|------|--------|--------|---------|------|------|-----------|------|----------|------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | 5.0    | 5.5  | 6.0  | 6.5  | 7.0  | 7.5  | 8.0  | 8.5    | 9.0    | 9.5     | 10.0 | 10.5 | 11.0      | 11.5 | 12.0     | 12.5 | 13.0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.                                   | 5 idle | idle   | idle   | idle    | idle | idle | idle      | idle | idle     | idle | idle    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.                                   | 0 idle | 22   | 29   | 34   | 37   | 38   | 38   | 37     | 35     | 32      | 29   | 26   | 23        | 21   | idle     | idle | idle    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.                                   | 5 32   | 50   | 65   | 76   | 83   | 86   | 86   | 83     | 78     | 72      | 65   | 59   | 53        | 47   | 42       | 37   | 33      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ê 2.                                 | 0 57   | 88   | 115  | 136  | 148  | 153  | 152  | 147    | 138    | 127     | 116  | 104  | 93        | 83   | 74       | 66   | 59      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Birth 2.                             | 5 89   | 138  | 180  | 212  | 231  | 238  | 238  | 230    | 216    | 199     | 181  | 163  | 146       | 130  | 116      | 103  | 92      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | height (H <sub>hig</sub><br>is is is | 0 129  | 198  | 260  | 305  | 332  | 340  | 332  | 315    | 292    | 266     | 240  | 219  | 210       | 188  | 167      | 149  | 132     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | leig 3.                              | 5      | 270  | 354  | 415  | 438  | 440  | 424  | 404    | 377    | 362     | 326  | 292  | 260       | 230  | 215      | 202  | 180     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | 0 -    | *    | 462  | 502  | 540  | 546  | 530  | 499    | 475    | 429     | 384  | 366  | 339       | 301  | 267      | 237  | 213     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RM 4.                                | 5 -    |      | 544  | 635  | 642  | 648  | 628  | 590    | 562    | 528     | 473  | 432  | 382       | 356  | 338      | 300  | 266     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Te 5.                                | 0      | ~    | -    | 739  | 726  | 731  | 707  | 687    | 670    | 607     | 557  | 521  | 472       | 417  | 369      | 348  | 328     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Significant wave                     | 5 -    |      |      | 750  |      | 750  | 750  | 750    | 737    | 667     | 658  | 586  | 530       | 496  | 446      | 395  | 365     |
| A Turner of the second s | bis 6.                               | 0      |      |      | -    |      |      |      |        |        |         | 711  | 633  | 619       | 558  | 512      | 470  | 415     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.                                   | 5      |      | 14   | *    | 750  |      |      |        |        |         | 750  | 743  | 658       | 621  | 579      | 512  | 481     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.                                   | 0 -    | 1    | -    | -    | 14   |      |      |        |        |         |      |      | 750       | 676  | 613      | 584  | 525     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.                                   | 5      | -    |      | 2    | -    | 4-31 |      |        |        |         |      |      |           |      | 686      | 622  | 593     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.                                   |        |      | 14   |      | 12   | Bar  | 2    |        |        |         |      |      |           |      |          | 690  | 625     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |        | -    | -    |      |      |      |      |        |        |         |      |      | and and a |      | THE REAL |      | Abrinks |

(a) (b) Figure 13: Pelamis wave generator (a) and power matrix: output in kW (b).

|                  |     |       |       |        |        |       |       |       |      |      | Wave | Period – | · Tz (s) |       |       |      |      |        |      |      |      |      |
|------------------|-----|-------|-------|--------|--------|-------|-------|-------|------|------|------|----------|----------|-------|-------|------|------|--------|------|------|------|------|
|                  |     | 4.0   | 4.5   | 5.0    | 5.5    | 6.0   | 6.5   | 7.0   | 7.5  | 8.0  | 8.5  | 9.0      | 9.5      | 10.0  | 10.5  | 11.0 | 11.5 | 12.0   | 12.5 | 13.0 | 13.5 | 14.0 |
|                  | 0.5 | 0     | 0     | 0      | 0      | 0     | 0     | 0     | 0    | 0    | 0    | 0        | 0        | 0     | 0     | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
|                  | 1.0 | 203   | 276   | 348    | 432    | 516   | 608   | 699   | 798  | 896  | 925  | 953      | 958      | 962   | 941   | 919  | 870  | 820    | 742  | 663  | 555  | 446  |
|                  | 1.5 | 412   | 448   | 485    | 617    | 750   | 899   | 1049  | 1212 | 1375 | 1433 | 1491     | 1509     | 1527  | 1502  | 1477 | 1404 | 1332   | 1209 | 1086 | 912  | 737  |
|                  | 2.0 | 621   | 621   | 621    | 802    | 983   | 1191  | 1398  | 1626 | 1853 | 1941 | 2029     | 2061     | 2092  | 2063  | 2034 | 1939 | 1844   | 1677 | 1509 | 1269 | 1028 |
| Ę                | 2.5 | 1123  | 1123  | 1123   | 1213   | 1304  | 1609  | 1914  | 2258 | 2602 | 2752 | 2903     | 2972     | 3041  | 3017  | 2993 | 2868 | 2743   | 2504 | 2266 | 1910 | 1555 |
| Height           | 3.0 | 1624  | 1624  | 1624   | 1624   | 1624  | 2027  | 2430  | 2890 | 3350 | 3563 | 3776     | 3883     | 3989  | 3970  | 3951 | 3796 | 3641   | 3332 | 3022 | 2552 | 2082 |
| Hei              | 3.5 | 2581  | 2581  | 2581   | 2581   | 2581  | 2783  | 2984  | 3588 | 4191 | 4494 | 4796     | 4870     | 4945  | 4935  | 4926 | 4845 | 4765   | 4374 | 3983 | 3372 | 2761 |
| ave              | 4.0 | 3538  | 3538  | 3538   | 3538   | 3538  | 3538  | 3538  | 4285 | 5032 | 5424 | 5816     | 5858     | 5900  | 5900  | 5900 | 5895 | 5889   | 5416 | 4943 | 4191 | 3439 |
| t 🕅              | 4.5 | 4719  | 4719  | 4719   | 4719   | 4719  | 4719  | 4719  | 5093 | 5466 | 5662 | 5858     | 5879     | 5900  | 5900  | 5900 | 5897 | 5895   | 5658 | 5422 | 4822 | 4222 |
| Significant Wave | 5.0 | _5900 | _5900 | _5900_ | _5900_ | 5900  | _5900 | _5900 | 5900 | 5900 | 5900 | 5900     | 5900     | _5900 | _5900 | 5900 | 5900 | _5900  | 5900 | 5900 | 5452 | 5004 |
| gnifi            | 5.5 | 5900  | 5900  | 5900   | 5900   | 5900  | 5900  | 5900  | 5900 | 5900 | 5900 | 5900     | 5900     | 5900  | 5900  | 5900 | 5900 | 5900   | 5900 | 5900 | 5676 | 5452 |
| Sig              | 6.0 | 5900  | 5900  | 5900   | 5900   | 5900  | 5900  | 5900  | 5900 | 5900 | 5900 | 5900     | 5900     | 5900  | 5900  | 5900 | 5900 | 5900   | 5900 | 5900 | 5900 | 5900 |
|                  | 6.5 | 5900  | 5900  | 5900   | 5900   | 5900  | 5900  | 5900  | 5900 | 5900 | 5900 | 5900     | 5900     | 5900  | 5900  | 5900 | 5900 | 5900   | 5900 | 5900 | 5900 | 5900 |
|                  | 7.0 | 5900  | _5900 | 5900   | 5900   | 5900  | 5900  | 5900  | 5900 | 5900 | 5900 | 5900     | 5900     | 5900  | _5900 | 5900 | 5900 | _5900_ | 5900 | 5900 | 5900 | 5900 |
|                  | 7.5 | 5900  | _5900 | 5900   | 5900   | _5900 | 5900  | 5900  | 5900 | 5900 | 5900 | 5900     | 5900     | _5900 | 5900  | 5900 | 5900 | 5900   | 5900 | 5900 | 5900 | 5900 |
|                  | 8.0 | 5900  | 5900  | 5900   | 5900   | 5900  | 5900  | 5900  | 5900 | 5900 | 5900 | 5900     | 5900     | 5900  | 5900  | 5900 | 5900 | 5900   | 5900 | 5900 | 5900 | 5900 |

Figure 14: Wave Dragon power matrix (optimised for high average wave conditions): output in kW [30].

|                |     |     |     |     |     |     |      |      |      |      |      |      | W    | ave Pe | eriod – | Tpow ( | s)   |      |      |      |      |      |      |      |      |      |      |      |
|----------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|--------|---------|--------|------|------|------|------|------|------|------|------|------|------|------|------|
| _              |     | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5  | 8.0  | 8.5  | 9.0  | 9.5  | 10.0 | 10.5 | 11.0   | 11.5    | 12.0   | 12.5 | 13.0 | 13.5 | 14.0 | 14.5 | 15.0 | 15.5 | 16.0 | 16.5 | 17.0 | 17.5 | 18.0 |
| - [            | 0.5 | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0       | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| _              | 1.0 | 2   | 7   | 13  | 19  | 26  | 34   | 41   | 48   | 58   | 68   | 81   | 93   | 105    | 118     | 131    | 144  | 153  | 163  | 183  | 203  | 213  | 223  | 223  | 223  | 223  | 225  | 227  |
| Ë              | 1.5 | 4   | 15  | 28  | 41  | 56  | 72   | 85   | 99   | 121  | 143  | 173  | 203  | 226    | 248     | 266    | 285  | 309  | 334  | 357  | 380  | 389  | 398  | 398  | 398  | 398  | 403  | 409  |
| Hsig           | 2.0 | 8   | 26  | 49  | 73  | 100 | 127  | 150  | 172  | 210  | 247  | 292  | 337  | 366    | 395     | 418    | 442  | 482  | 523  | 543  | 563  | 579  | 596  | 596  | 596  | 596  | 597  | 598  |
| Ę              | 2.5 | 15  | 43  | 78  | 113 | 159 | 205  | 234  | 263  | 320  | 376  | 438  | 499  | 531    | 563     | 603    | 643  | 675  | 708  | 741  | 774  | 785  | 797  | 797  | 797  | 797  | 800  | 804  |
| Height         | 3.0 | 25  | 61  | 111 | 161 | 227 | 293  | 339  | 386  | 453  | 521  | 600  | 680  | 722    | 765     | 827    | 888  | 897  | 906  | 945  | 984  | 996  | 1009 | 1009 | 1009 | 1009 | 1003 | 998  |
| Ne             | 3.5 | 35  | 92  | 155 | 218 | 305 | 391  | 454  | 517  | 605  | 694  | 772  | 851  | 913    | 975     | 1036   | 1096 | 1119 | 1141 | 1163 | 1185 | 1198 | 1211 | 1211 | 1211 | 1211 | 1208 | 1206 |
| N <sup>B</sup> | 4.0 | 35  | 114 | 194 | 273 | 380 | 486  | 572  | 659  | 776  | 894  | 961  | 1027 | 1103   | 1179    | 1227   | 1275 | 1316 | 1357 | 1365 | 1374 | 1394 | 1414 | 1414 | 1414 | 1414 | 1415 | 1416 |
| ant            | 4.5 | 0   | 0   | 235 | 332 | 479 | 626  | 722  | 819  | 957  | 1096 | 1168 | 1240 | 1320   | 1401    | 1449   | 1497 | 1547 | 1598 | 1590 | 1583 | 1610 | 1637 | 1637 | 1637 | 1637 | 1616 | 1595 |
| Signific       | 5.0 | 0   | 0   | 280 | 400 | 592 | 784  | 899  | 1014 | 1144 | 1274 | 1380 | 1487 | 1569   | 1651    | 1691   | 1731 | 1785 | 1838 | 1807 | 1777 | 1806 | 1836 | 1836 | 1836 | 1836 | 1806 | 1777 |
| Sig            | 5.5 | 0   | 0   | 320 | 432 | 641 | 849  | 1033 | 1216 | 1331 | 1446 | 1568 | 1690 | 1778   | 1867    | 1919   | 1970 | 1977 | 1984 | 1994 | 2005 | 2017 | 2030 | 2030 | 2030 | 2030 | 1990 | 1951 |
|                | 6.0 | 0   | 0   | 0   | 0   | 680 | 944  | 1155 | 1367 | 1495 | 1623 | 1759 | 1895 | 1983   | 2072    | 2137   | 2202 | 2205 | 2207 | 2226 | 2246 | 2240 | 2234 | 2234 | 2234 | 2234 | 2194 | 2154 |
|                | 6.5 | 0   | 0   | 0   | 0   | 720 | 1123 | 1335 | 1547 | 1678 | 1809 | 1963 | 2116 | 2200   | 2284    | 2332   | 2380 | 2425 | 2470 | 2452 | 2434 | 2403 | 2373 | 2373 | 2373 | 2373 | 2354 | 2336 |

Figure 15: Archimedes Wave Swing power matrix (unrestricted): output in kW [30].

When multiple power matrices are available, the suitability of the device for a particular site can be evaluated by completing a scatter diagram. The wave height and wave period recorded at the site in question should be plotted against one another as illustrated in Figure 16. If the power matrix and recorded data from the site in question overlap each other significantly on the scatter diagram, then the wave energy generator being investigated is a good choice for that particular location. As seen in Figure 16, the Pelamis is a very good match for the sample site analysed.

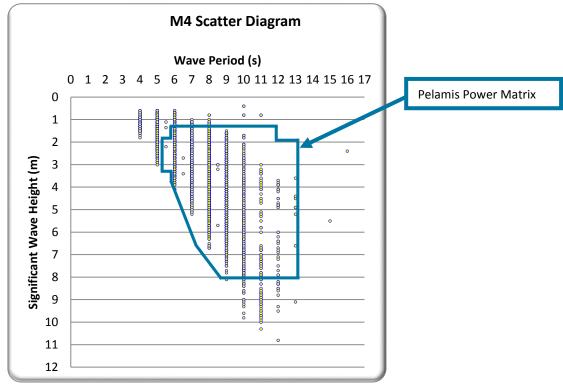



Figure 16: Scatter diagram for M4 data buoy off the coast of Ireland.

Once the most suitable wave power device has been chosen, and the power matrix obtained, the wave height and wave period data recorded at the site must be converted into power output. To do this, I created a program in MATLAB [31] and I used wave height and wave period data from four different sites around the coast of Ireland. The data was gathered by the Marine Institute in Ireland using data buoys (see Figure 17) distributed around the Irish coast [32]. Obtaining data from four different locations spread around the island ensured that wave energy fluctuations were minimised. A list of data buoys can be seen at [33].



Figure 17: A Data Buoy.

#### **River Hydro**

River hydro refers to hydroelectric dams with no storage facility i.e. they must operate as water passes through them. Although there is no river hydro in Ireland at the moment, it was used to simulate the Irish reference model. I found that if hydro power was simulated under the "Hydro" option, which is discussed after

this section, EnergyPLAN would simulate the dispatch of hydro itself. However, the optimal dispatch of hydro according to EnergyPLAN was different to the actual dispatch of hydro power in Ireland in the year 2007. In contrast, the river hydro power did not simulate the dispatch of hydro, but instead it replicated the historical hourly values that were inputted as the distribution. These hourly outputs were obtained from the Irish TSO, but note that it took four months to obtain this data so long waiting periods may need to be accounted for. When modelling future alternatives for Ireland, I will use the Hydro Power option in EnergyPLAN, as this will enable EnergyPLAN to simulate the dispatch of hydro itself, which is desirable in the future.

#### Hydro Power

I found that hydro data was quite difficult to gather i.e. power capacity and storage capacity. As indicated in Figure 8, hydro only provides 2.3% of Ireland's electricity demands, and therefore there is not a lot of detailed information which is easily accessible for the hydro plants. As a result, I found that the most productive approach was to contact the hydro plants directly, and request the data required from the operator in the control room. For the distribution of the hydro production, I used annual output data for the hydro plants which was recorded by the Irish TSO's, EirGrid [12] and SEMO [34]. As stated previously, hydro power was only simulated using this option when modelling future alternatives for Ireland, and not when modelling the reference model in 2007.

#### 3.3.3 Waste

| 🕻 EnergyPLAN 12.0: Startdata                              |                                                                                                                                                                                                                                                                                                   |                                      |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                           | EnergyPLAN 12.0: Startdata                                                                                                                                                                                                                                                                        |                                      |
| Home Add-On Tools Help                                    |                                                                                                                                                                                                                                                                                                   | 6                                    |
|                                                           |                                                                                                                                                                                                                                                                                                   |                                      |
| 🕇 📑 🗟 🖉 🖶 Save 🗘 🖾 🌐                                      | 🛛 🔢 🖷 🗇 🔥 🛄 🖄 Show Hints*                                                                                                                                                                                                                                                                         |                                      |
| Home New Import Settings Notes Web                        | Run Run Run Run Treeview Tabs<br>(Clipboard) (Screen) (Print) (Serial)                                                                                                                                                                                                                            |                                      |
| General                                                   | Run View                                                                                                                                                                                                                                                                                          |                                      |
| Warnings Appear Here:                                     |                                                                                                                                                                                                                                                                                                   |                                      |
|                                                           | Storage Cost Simulation Output Notes Delete Import From Excel                                                                                                                                                                                                                                     |                                      |
| Overview     Heat and Electricity Electricity             | nly Heat Only Thermal Plant Fuel Distribution Waste Liquid and Gas Fuels CD2                                                                                                                                                                                                                      |                                      |
| ⊕- Demand                                                 |                                                                                                                                                                                                                                                                                                   |                                      |
|                                                           |                                                                                                                                                                                                                                                                                                   |                                      |
| Electricity Only                                          | al on the three district heating groups. Only one hour distribution can be defined and storage of waste is not considered an option.                                                                                                                                                              |                                      |
| Heat Univ                                                 | al on the milee district nearing groups. Unly one nour distribution can be defined and storage of waste is not considered an option.<br>Ind given priority in the respective district heating groups. Electricity production is fed into the grid. Biofuel production for transportation is trans | sfered to the transportation window. |
|                                                           | oliers is substracted from the fuels in the respective district heating group. "Various" represent non energy products such as food.                                                                                                                                                              |                                      |
|                                                           | strated from the cost of the waste energy recource.<br>Strategy CHP-Boiler                                                                                                                                                                                                                        |                                      |
| EO2     Balancing and Storage     Distribution of Monator |                                                                                                                                                                                                                                                                                                   |                                      |
| Cost                                                      |                                                                                                                                                                                                                                                                                                   |                                      |
| - Simulation                                              | Fuel Substitution                                                                                                                                                                                                                                                                                 |                                      |
| Waste input                                               | DH production Electricity production Biofuel transportation Biofuel CHP-Boiler Various (Food etc.)                                                                                                                                                                                                |                                      |
| Unit: TWh/year                                            |                                                                                                                                                                                                                                                                                                   | /year MDKK/TW/h MDKK                 |
| Group 1: 0                                                | 0.8 0.00 0 0.00 0 0.00 0 0.00 0 0                                                                                                                                                                                                                                                                 | 1,00 1 0,00                          |
| Group 2: 0                                                | 0.8 0.00 0 0.00 0 0.00 0 0.00 0 0                                                                                                                                                                                                                                                                 | ,00 1 0,00                           |
| Group 3: 0                                                | 0.8 0.00 0 0.00 0 0.00 0 0.00 0 0                                                                                                                                                                                                                                                                 | ,00 1 0,00                           |
| Total: 0,00                                               | 0.00 0.00 0.00                                                                                                                                                                                                                                                                                    | 0.00 0.00                            |
| Total. 0,00                                               | 0,00 0,00 0,00                                                                                                                                                                                                                                                                                    | 0,00                                 |
|                                                           |                                                                                                                                                                                                                                                                                                   |                                      |
| Geothermal operated                                       | y absorption heat pump on steam from waste CHP plants                                                                                                                                                                                                                                             |                                      |
| Unit                                                      | DH production Electricity production Steam for Heat Pump Heat Pump (CHP) Steam storage<br>Efficiency TWh/year Efficiency TWh/year COP MJ/s GWh Los                                                                                                                                                | Heat Pump on steam from storage      |
|                                                           | Efficiency Twh/year Efficiency Twh/year COP MJ/s GWh Los<br>0 0,00 0 0.00 0 0.00 0 0 0 0 0 0                                                                                                                                                                                                      | s (%) COP                            |
| Group 2                                                   |                                                                                                                                                                                                                                                                                                   |                                      |
| Group 3                                                   | 0 0,00 0 0,00 0 0,00 0 0 0 0                                                                                                                                                                                                                                                                      | 0                                    |
|                                                           |                                                                                                                                                                                                                                                                                                   |                                      |
|                                                           |                                                                                                                                                                                                                                                                                                   |                                      |
|                                                           |                                                                                                                                                                                                                                                                                                   |                                      |
|                                                           |                                                                                                                                                                                                                                                                                                   |                                      |
|                                                           |                                                                                                                                                                                                                                                                                                   |                                      |
|                                                           |                                                                                                                                                                                                                                                                                                   |                                      |
|                                                           |                                                                                                                                                                                                                                                                                                   |                                      |
|                                                           |                                                                                                                                                                                                                                                                                                   |                                      |

There is currently no waste used for energy production in Ireland so no data was required for the Irish reference model. However, Münster carried out a detailed energy system analysis of waste-to-energy options in [45], which could be useful if data is required.

#### 3.3.4 CO2

| n [], EnergyPLAI 12.0: Startdata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - <b>•</b> × |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| EnergyPLAN12.0: Startdata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Home AddOn Tools Hep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0            |
| Import       Import |              |
| Warnings Appear Here:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| Overview       Demand       Supply       Balancing and Storage       Cost       Smulation       Upday       Note:       Cost       M       Cost       Cost       Cost       M       Cost       Cost       Cost       M       Cost       Cost       Cost       Not       Not       Not       Not       Not       Not       Cost       Cost       Cost       Cost       Not       Not       Not                                                                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |

#### 3.3.4.1 Emission Factors

In the EnergyPLAN model, three CO<sub>2</sub> emission factors are required: one for coal, oil, and natural gas. However, in this study coal and oil do not just account for a single fuel but instead, they account for a group of fuels. The coal category represents peat and coal as these were modelled as a single fuel: this is a method which has been carried out in previous models of the Irish energy system [49] due to the similar power plant efficiencies and CO<sub>2</sub> emissions of the two fuels. The oil category represents a number of different types of oil including kerosene, diesel, and coke. Therefore, the CO<sub>2</sub> emission factors for coal and oil were calculated based on fuel consumptions from the Irish Energy Balance [16], and CO<sub>2</sub> emission factors recommended by SEAI [44] for the various fuels they represent. In conclusion, the CO<sub>2</sub> emission factor used for coal/peat was 100.63 kg/GJ (see Table 3-4), for oil was 73.19 kg/GJ (see Table 3-5) and for natural gas was 57.1 kg/GJ [44].

| Fuel            | Consumption<br>(TWh) [16] | Consumption<br>(% of Total) | CO <sub>2</sub> Emission Factor<br>(kg/GJ) [44] |
|-----------------|---------------------------|-----------------------------|-------------------------------------------------|
| Coal            | 17.425                    | 65.09                       | 94.60                                           |
| Milled Peat     | 6.186                     | 23.11                       | 116.70                                          |
| Sod Peat        | 2.167                     | 8.09                        | 104.00                                          |
| Briquetted Peat | 0.992                     | 3.71                        | 98.90                                           |
| Total           | 26.770                    | 100.00                      | 100.63                                          |

#### Table 3-4

| Table 3-5 |  |
|-----------|--|
|-----------|--|

CO<sub>2</sub> emission factor for oil.

| Fuel                    | Consumption<br>(TWh) [16] | Consumption<br>(% of Total) | CO <sub>2</sub> Emission Factor<br>(kg/GJ) [44] |
|-------------------------|---------------------------|-----------------------------|-------------------------------------------------|
| Gasoil                  | 45.230                    | 43.35                       | 73.3                                            |
| Gasoline                | 17.425                    | 21.40                       | 70.0                                            |
| Jet Kerosene            | 12.134                    | 11.63                       | 71.4                                            |
| Kerosene                | 10.620                    | 10.18                       | 71.4                                            |
| Fuel Oil (Residual Oil) | 8.528                     | 8.17                        | 76.0                                            |
| Coke                    | 3.637                     | 3.49                        | 100.8                                           |
| LPG                     | 1.856                     | 1.78                        | 63.7                                            |
| Naphtha                 | 0.012                     | 0.01                        | 73.3                                            |
| Total                   | 104.342                   | 100.00                      | 73.2                                            |

## 3.4 Balancing and Storage

## 3.4.1 Electricity Storage

| Characteristic EnergyPLAN 12.0: Startdata |                                                                                                                                                                                                                                                                        | - • × |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ţ                                         | EnergyPLAN 12.0: Startdata                                                                                                                                                                                                                                             |       |
|                                           |                                                                                                                                                                                                                                                                        | 0     |
| Home Add-On Tools                         | s Help                                                                                                                                                                                                                                                                 | 0     |
|                                           | - Open 🚖 🖅 🛲 🚮 🔽 💼 着 🔽 📑 🗟 Show Hints*                                                                                                                                                                                                                                 |       |
| 🕇 🚺 📲 🚺                                   | - Coen 💠 📝 🌐 🖾 🖾 🖶 📅 🗇 📩 🛄 🛤 Show Hints*                                                                                                                                                                                                                               |       |
| Home New Import                           | Settings Notes Web Run Run Run Run Treeview Tabs                                                                                                                                                                                                                       |       |
|                                           | Save As (Clipboard) (Screen) (Print) (Serial)                                                                                                                                                                                                                          |       |
|                                           |                                                                                                                                                                                                                                                                        |       |
| Warnings Appear Here:                     |                                                                                                                                                                                                                                                                        |       |
| Ouenieus                                  | Demand Supply Balancing and Storage Cost Simulation Output Notes Delete Import From Excel                                                                                                                                                                              |       |
| Overview                                  | Electricity Thermal Liquid and Gas Fuel                                                                                                                                                                                                                                |       |
|                                           |                                                                                                                                                                                                                                                                        |       |
| Supply                                    | Electric grid stabilisation requirements:                                                                                                                                                                                                                              |       |
| Balancing and Storage                     | Critical Excess Electricity Production (CEEP)                                                                                                                                                                                                                          |       |
| Electricity                               | Minimum grid stabilisation production share 0.3 Critical Electricity Excess Production (CEEP) regulation: Write number: 0                                                                                                                                              |       |
| Thermal<br>Liquid and Gas Fuel            | Stabilisation share of CHP2 0 1: Reducing RES1 and RES2                                                                                                                                                                                                                |       |
|                                           | 2: Reducing CHP in g2: By replacing with boler<br>3: Reducing CHP in g2: By replacing with boler                                                                                                                                                                       |       |
| Simulation                                | Stabilisation share of Waste LHP                                                                                                                                                                                                                                       |       |
| 🖭 - Output                                | Chalk Zuplice share such above DV and VOC                                                                                                                                                                                                                              |       |
|                                           | Stabilisation share small charge z v and v zb share of max capacity 6: Reducing RES3                                                                                                                                                                                   |       |
|                                           | 7 : Reducing power plant in combination with RES1, RES2, RES3 and RES4                                                                                                                                                                                                 |       |
|                                           | 8 : Increasing CU2Hydrogenation (See Tabsheet Sythetic Fuel) if available capacity                                                                                                                                                                                     |       |
|                                           | Minimum PP: 0 MW Note: Electricity interconnection is defined under the                                                                                                                                                                                                |       |
|                                           | Cost->Investment->External Electricity Market' tabsheet                                                                                                                                                                                                                |       |
|                                           | Electricity Storage         Pump/Compressor         0       0.8         0       0.9         0       0.9         Allow for simultaneous operation of turbine and pump:       No         'I Fuel ratio = fuel input / electric output (for CAES technologies or similar) |       |
|                                           |                                                                                                                                                                                                                                                                        |       |

Only pumped hydroelectric energy storage (PHES) is in use in Ireland so I did not have to gather any data on electrolysers or compressed air energy storage (CAES). For the PHES parameters I simply contacted the plant control rooms and they provided information of pump/turbine and storage capacities. However, plant efficiencies could not be revealed as it was "commercially sensitive". Therefore, from the Energy Balance, I calculated the overall PHES efficiency using

$$\eta_{TH} = \frac{E_{OUT}}{E_{IN}} \tag{3}$$

where  $E_{OUT}$  was the total electricity produced from Turlough Hill in 2007 (0.349 TWh) and  $E_{IN}$  is the total electricity consumed by Turlough Hill in 2007 (0.546 TWh). The resulting round-trip efficiency,  $\eta_{TH}$ , was 63.9%. Therefore, I inserted the a pump efficiency of 79.9% and a turbine efficiency of 79.9%, so that the round-trip efficiency was 0.799\*0.799 = 0.639. Note that the same efficiency was used for the pump and turbine as this is typically the situation within a PHES facility [35].

#### 3.5 Economic Data Required

EnergyPLAN simulates the costs of an energy system in four primary categories:

- 1. Investment costs: capital required, the lifetime of each unit, and the interest rate on repayments.
- 2. Fuel costs: purchasing, handling, and taxes in relation to each fuel as well as their  $CO_2$  costs.
- 3. Operation costs: the variable and fixed operation and maintenance costs for each production unit.
- 4. External electricity market (see section 4.5)

## 3.5.1 General

When downloading the EnergyPLAN tool, you also receive a number of costs databases for different years. These are primarily based on price forecasts from the Danish Energy Agency (DEA), so they can be used as a proxy when completing your studies. For example, the 2020DEACosts.txt file highlighted in Figure 18 provides the costs required for the year 2020 based on data from the DEA. However, costs may vary from country to country so you should consider this when interpreting your results. The most recent version of the EnergyPLAN cost files are available online: <u>www.EnergyPLAN.eu/costdatabase</u>. These can be loaded into the EnergyPLAN tool under the Cost->General tabsheet.

| 🛛 🚱 💬 🗢 📕 🕨 EnergyPLAN 🕨 energy | Plan Data 🕨 Cost             |
|---------------------------------|------------------------------|
| Organize 🔻 Include in library 👻 | Share with 🔻 Burn New folder |
| Favorites                       | Name                         |
| 👔 CEESA                         | DA2030_cost2009.txt          |
| 📃 Desktop                       |                              |
| Devente este                    |                              |

Figure 18: Cost database provided with the EnergyPLAN tool.

The costs can be used by EnergyPLAN to perform socio-economic and business-economic studies, as well as a market simulation for the energy system.

#### 3.5.1.1 Interest Rate

Typically an interest rate of 3% is assumed when preforming an analysis in EnergyPLAN, along with a sensitivity analysis using 6%.

#### 3.5.1.2 CO<sub>2</sub> Price

There is no carbon tax in Ireland at the moment. However, Ireland participates in the European carbon trading scheme and therefore there is a cost associated with carbon, even though it is not an internal government tax. For information on carbon costs, visit <u>http://www.pointcarbon.com</u>.

## 3.5.2 Investment Tab

| EnergyPLAN 12.0: Startdata          |                            |                         |                             |                   |                           |                         |                                         |  |
|-------------------------------------|----------------------------|-------------------------|-----------------------------|-------------------|---------------------------|-------------------------|-----------------------------------------|--|
|                                     |                            |                         |                             | EnergyPLA         | N 12.0: Startdata         |                         |                                         |  |
| Home Add-On Tools                   | Help                       |                         |                             |                   |                           |                         |                                         |  |
| 🕈 🔓 👰 💾                             | r 🗘 🕼 🖗                    | 🕽 🚺 🗈                   | 1 🖷 🗇                       | Å F               | Show Hints*               |                         |                                         |  |
| lama Nau Impost                     | Cottings Natos We          |                         |                             | Treeview Tab      | 15                        |                         |                                         |  |
| from excel 🗄 Si<br>Gene             | ave As                     | (Clipboard) (Scree      | en) (Print) (Serial)<br>Run |                   | View                      |                         |                                         |  |
| nings Appear Here:                  | ti di                      | F                       | kun                         |                   | view                      |                         |                                         |  |
|                                     | Demand Supply Balancing    | and Storage Cost S      | imulation Output N          | lotes Delete Im   | port From Excel           |                         |                                         |  |
| Overview                            | General Investment and Fi  |                         |                             |                   |                           |                         |                                         |  |
| - Demand                            | Heat and Electricity Renew | wable Energy Liquid and | Gas Fuels Heat Infr         | astructure Road \ | /ehicles Other Vehicles T | ransport Infrastructure | e Other Infrastructure Water Additional |  |
| - Supply<br>- Balancing and Storage |                            |                         |                             |                   |                           |                         |                                         |  |
| - Cost<br>General                   | Prod. type                 | Investment              | Period                      | O. and M.         | Total Inv. Costs          | Annual Cost             | ts (MDKK/year)                          |  |
| Investment and Fixed OM             | riou. ypo                  |                         | pr. Unit Years              | % of Inv.         | MDKK                      | Investment              |                                         |  |
| Fuel<br>Variable OM                 |                            |                         |                             |                   |                           |                         |                                         |  |
| - External Electricity Market       | Small CHP units            |                         | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
| - Output                            | Large CHP units            |                         | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Heat Storage CHP           | 20 GWh                  | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Waste CHP                  | 0,00 TWh/year           | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Absorp. HP (Waste)         | 0 MW-th                 | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Heat Pump gr. 2            | 0 MW-e                  | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Heat Pump gr. 3            | 100 MW-e                | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | DHP Boiler group 1         | 0 MW-th                 | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Boilers gr. 2 and 3        | 10000 MW-th             | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Electric Boiler gr2-gr3    | 200 MW-e                | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Large Power Plants         |                         | 0 0                         | 0                 | 0                         | ů                       | 0                                       |  |
|                                     |                            |                         | 0 0                         | 0                 | 0                         | -                       | 0                                       |  |
|                                     | Nuclear                    |                         |                             |                   |                           | 0                       |                                         |  |
|                                     | Interconnection            |                         | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Pump                       | 0 MW-e                  | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Turbine                    | 0 MW-e                  | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Pump Storage               | 0 GWh                   | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Industrial CHP Electricity | 0,00 TWh/year           | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     | Industrial CHP Heat        |                         | 0 0                         | 0                 | 0                         | 0                       | 0                                       |  |
|                                     |                            |                         |                             |                   |                           |                         |                                         |  |

Under this tab you must enter the investment, lifetime, and fixed operation and maintenance costs. These costs are used for to calculate the annual costs of each component based on a fixed rate repayment loan: the governing equations for these calculations are discussed in detail in the EnergyPLAN user manual [1]. The investment and operation costs for condensing power plants were obtained from [50], and are displayed in Table 3-6.

#### Table 3-6

Investment, fixed O&M, and variable O&M costs for Irish condensing power plants [50].

| Plant Type                                                                             | Investment<br>Costs<br>(M€/MW) | Fixed<br>O&M Costs<br>(€/MW/year) | Variable<br>O&M Costs<br>(€/MWh) | 2007 Irish Capacity<br>/ Fuel Type |
|----------------------------------------------------------------------------------------|--------------------------------|-----------------------------------|----------------------------------|------------------------------------|
| Steam turbine, coal fired, advanced steam process, 2004                                | 1.100                          | 16000                             | 1.800                            | 852.5 MW / Coal<br>806 MW / Oil    |
| Steam turbine, coal fired advanced<br>steam process, 20% co-firing of<br>biomass, 2004 | 1.200                          | 22000                             | 3.000                            | 345.6 MW / Peat                    |
| Gas turbine single cycle, (40 - 125<br>MW), 2004                                       | 0.485                          | 7350                              | 2.500                            | 719 MW / Gas                       |
| Gas turbine combined cycle (100 -<br>400 MW), 2004                                     | 0.525                          | 14000                             | 1.500                            | 2806 MW / Gas                      |
| Gas turbine combined cycle (10 –<br>100 MW), 2004                                      | 0.700                          | 10000                             | 2.750                            | 208 MW / Gas                       |

The onshore wind and offshore wind costs were obtained from [52]: investment costs for onshore wind are 1.2 M€/MW and offshore wind is €1.6 M€/MW, while the fixed O&M costs are 6 €/MWh for onshore wind and 8.70 €/MWh for offshore wind<sup>5</sup>. The investment costs for hydro power in Ireland were obtained from the British Hydropower Association [53]: the investment cost for hydro stations below 100 MW is 1.765 M€/MW, the fixed O&M costs are approximately 2.7% of the investment and the variable O&M costs are approximately 1.3% of the investment. The costs for PHES in Ireland were found from Gonzalez *et al.* [51] as 0.476 M€/MW and 7.89 M€/GWh for the initial investment, 0.6% of the investment for the fixed O&M cost, and 3 €/MWh for the variable O&M cost.

For the individual heating units (such as boilers, electric heaters, solar) I found the investment and fixed O&M costs by contacting the suppliers as displayed in Table 3-7. Remember to include the installation costs for boilers and solar systems such as the installation of the central heating system, which can be obtained from [54]. The type of individual heating systems in Ireland (by fuel type) was got from a report carried out by the Irish Central Statistics Office (CSO) [55]. Finally, just to note that taxes should not be included in the costs inputted here. Therefore, if a supplier is contacted to obtain the costs, ensure the price quoted is without tax.

| Fuel Type        | Size          | Cost Including Installation<br>(€) | Lifetime<br>(years) | O&M Costs<br>(€/year) |
|------------------|---------------|------------------------------------|---------------------|-----------------------|
| Oil              | 26 kW         | 14750                              | 15                  | 110                   |
| Biomass          | 19 kW         | 19500                              | 15                  | 110                   |
| Natural Gas      | 26 kW         | 14750                              | 15                  | 110                   |
| Solid Fuel       | 21 kW         | 15300                              | 15                  | 110                   |
| Electric Boiler  | 12 kW         | 15500                              | 15                  | 0                     |
| Electric Heaters | 20 kW         | 6000*                              | 20                  | 0                     |
| Solar Thermal    | 2400 kWh/year | 5900                               | 35                  | 55                    |

## Table 3-7 Costs (excluding taxes) of individual heating systems for the reference model of the Irish energy system.

\*Does not account for electric transmission upgrades that may be necessary for widespread installations.

The 'Additional' tab can be used if there are any additional costs which have not been accounted for. For example, the cost of insulating houses to reduce energy demands may be accounted for here.

<sup>&</sup>lt;sup>5</sup> This does not include the balancing costs associated with wind power.

| C EnergyPLAN 12.0: Startdata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       | En                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nergyPLAN 12.0: Startdata               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Home Add-On Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Help                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Θ                |
| Home New Import<br>from excel 6 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ave Settings Notes Web Run Run R<br>(Clipboard) (Screen) (P                                                                                                           | un Run<br>(Serial)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tabs                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Warnings Appear Here:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Demand Supply Balancing and Storage Cost Simulatic<br>General Investment and Fixed DM Fuel Variable DM                                                                | External Electricity Marke                                                                                                                                                                                                                                                                                                                                                                                                                                                       | et                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Demand     Supply     Balancing and Storage     Cost     Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heat and Electricity Renewable Energy Liquid and Gas Fu                                                                                                               | Period 0.a                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and M. Total Inv. Costs<br>of Inv. MDKK | Annual Costs (MDKK/year)<br>Investment Fixed Opr. and M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water Additional |
| General<br>□ Investment and Fixed OM<br>□ Heat and Electricity<br>□ Liquid and Gas Fuels<br>□ Liquid and Gas Fuels<br>□ Liquid and Gas Fuels<br>□ Charles<br>□ Charles | Total Variour:       1.       2.       3.       4.       5.       6.       7.       8.       9.       10.       11.       12.       13.       14.       15.       16. | Desite         A           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0 | 0 III. III. III.                        | O         O           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.<br>18.<br>19.<br>20.                                                                                                                                              | 0 0<br>0 0<br>0 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0 0 0 0 0 0                           | 0 0<br>0 0<br>0 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |

## 3.5.3 Fuel Tab

\_\_\_\_



## 3.5.3.1 Fuel and CO<sub>2</sub> Costs

The purchasing costs for each fuel were obtained for the year 2007, 2010/2015, and 2020, which were recommended by the International Energy Agency [46] and the Danish Energy Authority [47] and are displayed in Table 3-8. Also, if required the current market price for different fuels can be obtained from the links below:

- Crude Oil: <u>http://www.oil-price.net/</u>
- Coal: <u>http://www.eia.doe.gov/cneaf/coal/page/coalnews/coalmar.html</u>
- Natural Gas: http://www.bloomberg.com/markets/commodities/energyprices.html

#### Table 3-8

#### Fuel prices used for 2007, 2010/2015 and 2020 [46, 47].

| (€/GJ)    | Crude Oil<br>(\$/bbl) | Crude Oil | Fuel<br>Oil | Gas Oil/<br>Diesel | Petrol/JP | Coal | Natural<br>Gas | Biomass |
|-----------|-----------------------|-----------|-------------|--------------------|-----------|------|----------------|---------|
| 2007      | 69.33                 | 9.43      | 6.66        | 11.79              | 12.48     | 1.94 | 5.07           | 6.30    |
| 2010/2015 | 100                   | 13.60     | 9.60        | 17.00              | 18.00     | 3.19 | 8.16           | 7.01    |
| 2020      | 110                   | 14.96     | 10.56       | 18.70              | 19.80     | 3.11 | 9.16           | 7.45    |

The crude oil price was used to identify the cost of Fuel Oil, Diesel, and Petrol/Jet Fuel. As these fuels are refined from crude oil their prices are proportional to the crude oil price and hence, the price ratio between each of these and crude oil typically remains constant. Therefore, the following ratios recommended by the Danish Energy Authority was used to calculate these prices [47]: ratio of crude oil to fuel oil was 1 to 0.70, crude oil to diesel was 1 to 1.25, and crude oil to petrol/jet fuel was 1 to 1.33. Also, the fuel handling costs were obtained from the Danish Energy Agency [47] and are displayed in Table 3-9.

#### Table 3-9

#### Fuel handling costs [47].

| <u> </u>                                        |          |                |           |       |             |             |
|-------------------------------------------------|----------|----------------|-----------|-------|-------------|-------------|
| €/GJ                                            | Fuel Oil | Gas oil/Diesel | Petrol/JP | Coal  | Natural Gas | Biomass     |
| Power Stations (central)                        | 0.228    | 0.228          |           | 0.067 | 0.428       | 1.160       |
| Distributed CHP, district<br>heating & industry | 1.914    | 1.807          |           |       | 1.165       | 1.120       |
| Individual households                           |          | 2.905          |           |       | 2.945       | 6.118       |
| Road transport                                  |          | 3.159          | 4.257     |       |             | 11.500 [48] |
| Airplanes                                       |          |                | 0.696     |       |             |             |

#### 3.5.3.2 Taxes

I rang the Irish revenue office to find out if there were any taxes on specific fuels or technologies and found that there was none. Note that Value Added Tax (VAT) is not included here.

## 3.5.4 Variable OM

| C EnergyPLAN 12.0: Startdata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         |  | - <b>x</b> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     | EnergyPLAN 12.0: Startdata                   |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         |  | _          |
| Home Add-On Tools Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         |  | 0          |
| Home New Import<br>from excel<br>Warning: Appear Here:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ttings Notes Web                                                                                                                                                                                                                                                                                                                                                                | Run Run Run Run (Clipboard) (Screen) (Print) (Serial Run Run Run (Serial Run Run Run (Serial Run                                                                                | Treeview Tabs                                | lints*                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         |  |            |
| General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 | Storage Cost Simulation Output<br>M Fuel Variable OM External Elect                                                                                                                                                 |                                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         |  |            |
| Balancing and Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Variable Operation and Maintenance Cost                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                         |  |            |
| Greenal     Greenal | 0         0           0         0           0         0           ver Plants         0           >Power         0           hermal         0           M2         0           rage         0           Dicharge *)         0           Dicharge *)         0           >Power Pump         0           vidual         r           Pump         0           Dicharge 0         0 | DKK/MWh-th<br>DKK/MWh-e<br>DKK/MWh-e<br>DKK/MWh-e<br>DKK/MWh-e<br>DKK/MWh-e<br>DKK/MWh-tuelinput<br>DKK/MWh-tuelinput<br>DKK/MWh-tuelinput<br>DKK/MWh-tuelinput<br>DKK/MWh-e<br>DKK/MWh-e<br>DKK/MWh-e<br>DKK/MWh-e | DistricHeating<br>Power Plants<br>Individual | PP2<br>Hydro Power<br>Geothermal<br>Incr. Ngas.CHP decr. B.<br>Incr. Bio.CHP decr. B.<br>Incr. HP decrease EH<br>s of storing 1 MWh e | 0 0 0<br>0 0<br>0 0 0 0 0<br>0 0 0 0 0<br>0 0 0 0 0 0<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh<br>IKCAMWh |  |            |

Under this tab you must enter the variable operation and maintenance costs. These are the costs that occur if the technology in question is used. For example, an annual service has to be done every year regardless of how often the generating plant operates. Therefore, this is a fixed operation and maintenance charge. However, if the generating plant generates 1 GWh it must get a second service costing  $\leq 1500$ . Therefore, the generating plant has a variable operation and maintenance cost of  $\leq 1500$ /GWh or  $\leq 1.50$ /MWh, as this second service will only be necessary if the plant actually operates.

For the condensing plant, I found the variable operation and maintenance costs for each type of power plants from [50], and calculated an overall variable O&M cost of  $1.84 \notin/MWh$  as displayed in Table 3-6. For the PHES facilities, I obtained the variable operation and maintenance costs from [51], and to date I have not found the variable operation and maintenance cost for the individual units.

#### **Areas of Difficulty** 4

Although a large degree of EnergyPLAN is intuitive, there were some areas which I found difficult to understand at first. Therefore, a few aspects of the model are discussed in more detail here.

#### **Thermal Energy System** 4.1

As there are very little CHP plants or no significant district heating networks in Ireland, heat is usually generated at the point of demand, so I did not fully understand how a thermal energy system worked. As EnergyPLAN can model this type of energy system, a brief outline is provided. To illustrate the flexibility induced by thermal energy storage on such a system, a snapshot of the power production during different scenarios is presented below. The system in question contains a CHP plant, wind turbines, a thermal storage, a hot water demand, and an electrical demand as illustrated in Figure 19.

During times of low wind power, a lot of electricity must be generated by the CHP plants to accommodate for the shortfall in power production. As a result, a lot of heat is also being produced from the CHP plant as seen in Figure 19a. The high production of heat means that production is now greater than demand, and consequently, heat is sent to the thermal storage.

Conversely, at times of high wind power, the CHP plants produce very little electricity and heat. Therefore, there is now a shortage of heat so the thermal storage is used to ensure that demand is met, as seen in Figure 19b.

Note: This system can be simulated by choosing the Technical Simulation 2: Balancing Heat and Electricity Demands under the Regulation tab in EnergyPLAN.

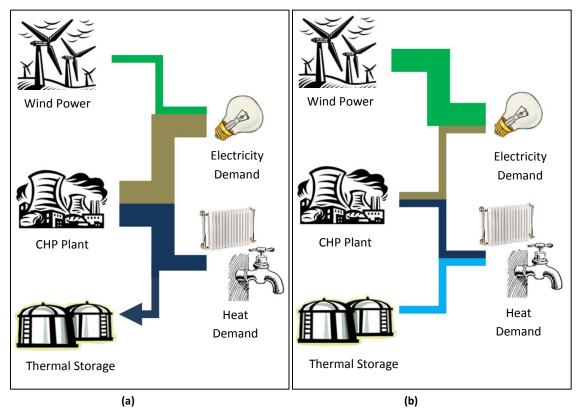



Figure 19: Energy system with district heating and thermal energy storage during (a) a low wind scenario and (b) a high wind scenario.

This system has been put into practice in Denmark which has the highest wind penetration in the world. Also, Lund and Mathiesen have created a roadmap for Denmark towards achieving a 100% renewable energy system using a thermal energy system [4-8].

# 4.2 District Heating Groups

After learning about the operation of the thermal storage energy system, the next question that comes to mind relates to the CHP inputs under the 'Input -> DistrictHeating' tab. Under this tab there are three district heating (DH) categories:

- 1. DH without CHP: These are systems that use boilers, waste heat or some other form of heat supply but do not use CHP.
- 2. DH with small CHP plants: This category represents CHP plants, which cannot operate without a heat load.
- 3. DH with large CHP plants: This category specifies the amount of centralised CHP capacity. The primary difference between these and group 2, is the fact that these plants do not need to create heat during the production of electricity. They can remove the heat from their system using water (usually from a river or the sea).

# 4.3 Technical Simulation vs. Market Simulation

There are two kinds of studies that can be carried out in EnergyPLAN:

- 1. Technical Simulation (tries to minimise fossil fuel consumption and can be carried out without any cost inputs).
- 2. Market Simulation (tries to minimise the operation costs of the system).

The technical simulation is based on the technical abilities of the components within the energy system. The difference between demand and supply is met as long as the power producing units are capable of completing the task. Only in situations where the power producing units are not able to meet demand is power imported from the external market, and where excess energy is produced (i.e. during high wind speeds) energy is exported to the external market. There are four types of technical simulation:

- 1. Balancing Heat Demands: This option performs a technical simulation where heat producing plants must operate according to the heat demand. The units chosen to supply the heat demand are chosen in the following order:
  - i. Solar Thermal.
  - ii. Industrial CHP.
  - iii. Heat Production from Waste.
  - iv. CHP Heat.
  - v. Heat Pumps.
  - vi. Peak Load Boilers.

This also affects electricity production: Under this regulation, the amount of heat that CHP units produce, and hence the amount of electricity they produce is dependent on the heat demand at that time.

2. Balancing Both Heat and Electricity Demands: This option performs a technical simulation where the export of electricity is minimised, primarily by replacing CHP production with boilers or heat pumps<sup>6</sup> when there is excess electricity. By doing this the electricity consumption is increased (i.e. more electric boilers or heat pumps) and the electricity produced is decreased (i.e. less CHP production). Also for this operating strategy, if there is condensing power plant production on the grid and there is CHP capacity available, then the CHP replaces it and the excess heat produced is sent to a thermal storage. A graphical illustration of this option is displayed in Figure 19. This ensures that the energy system operates with the largest efficiency possible.

<sup>&</sup>lt;sup>6</sup> Heat pumps are powered by electricity to transfer heat from one heat source (i.e. ground or water) into another heat source (i.e. a district-heating network).

- 3. Option 2 but "Reducing CHP also when partly needed for grid stabilisation": As stated this is largely the same as option 2. In option 2, CHP is reduced when there is a large output from renewable energy sources. However, in option 3, CHP is also reduced if it is required for grid stabilisation<sup>7</sup>.
- 4. Option 1 using the Triple Tariff: As stated this is largely the same as option 1. However, in this option, CHP plants do not operate according to the heat demand, but instead they operate according to the 'Triple Tariff'. The Triple Tariff was introduced in Denmark to encourage CHP units to produce electricity during peak hours. Therefore, CHP plants got paid 3 times more for producing electricity during peak hours (times) than any other time of the day. As a result, thermal storage became very common with CHP plants, so they could store the excess heat created while output was high during peak electricity hours. This regulation option is used to simulate the Triple Tariff.

The market simulation is designed to match supply and demand at the least cost, rather than on the minimum fuel consumption. For this simulation two primary steps are completed:

- 1. The short-term marginal cost<sup>8</sup> of producing electricity and/or heat is calculated for each power producing unit.
- 2. The least-cost combination of production units is chosen to supply the demand.

For a detailed explanation of the calculations completed in both the technical simulation and the market simulation, read chapter 6 and 7 respectively in the EnergyPLAN user manual [1].

#### 4.3.1 Business-economic vs. Socio-economic calculations

Economic results from EnergyPLAN can be divided into two types of studies:

- 1. Socio-economic costs: Taxes are not included.
- Business-economic costs: Taxes are included. 2.

The socio-economic studies are designed to minimise the costs to society i.e. the cost for the region/country to provide the energy necessary. In a socio-economic study the aim is to identify the costs associated with the Technical Simulation. This way you can simulate the performance of the energy system without the restrictions imposed by economic infrastructures. Therefore, the following steps can be followed:

- 1. Complete a Technical Simulation identifying the optimum technical operation of the energy system, for example the system with minimum Critical Excess Electricity Production (CEEP) or minimum CO<sub>2</sub>.
- 2. Complete a socio-economic study to identify the costs associated with the technical simulation.

The business-economic studies show what can be done while being profitable for a business or person. Once the socio-economic study is completed, the market-economic study should be done to identify how the existing market infrastructure obstructs the optimal technical solution. Therefore, after completing steps 1 and 2 above:

- 3. Carry out a business-economic market simulation to identify how the existing system prevents the introduction of the optimal technical solution.
- 4. Make changes to the existing tax system to outline how the existing market could be adjusted to promote the optimal technical solution.

Sometimes, socio-economic costs can include the following aspects also:

- 1. Job Creation.
- 2. Balance of Payment<sup>9</sup>.
- 3. Public Finances.

<sup>&</sup>lt;sup>7</sup> The electric grid needs to be maintained at a certain frequency and voltage. Power plants usually provide ancillary services that ensure this frequency and voltage are maintained. If the frequency or voltage is not maintained, the electric grid will stop working.

<sup>&</sup>lt;sup>8</sup> Marginal Cost: Is the cost at which there is enough supply to meet demand.

<sup>&</sup>lt;sup>9</sup> <u>http://en.wikipedia.org/wiki/Balance\_of\_payments</u>.

4. Environmental Costs.

However, these calculations are not made by the EnergyPLAN model. Instead, these benefits must be calculated externally by the user based on the investments made in the different energy system sectors. These calculations are discussed further in [56].

# 4.4 Comparing Energy Systems

It is very important to know how EnergyPLAN identifies that one energy system is better than an alternative energy system. There five primary variables that are recorded when doing this are:

- 1. PES (Primary Energy Supply): This is the total energy required within the energy system.
- 2.  $CO_2$ : This is the amount of  $CO_2$  produced within the energy system.
- 3. Annual costs: The annual costs required to supply the required energy demand.
- 4. EEEP (Exportable Excess Electricity Production): This is the amount of electricity that had to be exported from the energy system, AND it was possible to export because the required transmission out of the energy system was available.
- 5. CEEP (Critical Excess Electricity Production): This is the amount of electricity that had to be exported from the energy system, BUT COULD NOT be exported because the required transmission was not available.

How important each of these parameters is depends on the objective of your study. Exercise four in the EnergyPLAN training (which is available from the EnergyPLAN website [1]) provides a good example of how these parameters are used to compare alternative energy systems. Finally, other parameters may also be used to compare energy systems, but these are the most common.

# 4.5 External Electricity Market Price

Under the regulation tab, an external electricity market price can be defined. The distribution is NOT indexed like other distributions in EnergyPLAN: instead the actual values in the distribution are used. The distribution can be manipulated by an 'Addition Factor' and a 'Multiplication Factor'. The addition factor is used to represent the cost of CO<sub>2</sub>, because when a CO<sub>2</sub> cost is increased or introduced, it usually increases the cost of electricity by a constant amount for each hour. The multiplication factor is usually used to model an increase in fuel prices, as these usually increase the cost of electricity proportionally during each hour.

## 4.6 Operation Strategy for Electricity Storage

In EnergyPLAN, electricity storage is described in the form of pumped hydroelectric energy storage (PHES) as this is the largest and most common form of electricity storage in use today [57]. However, this can be used to define any type of electricity storage which has a charging capacity (i.e. pump/compressor), discharge capacity (i.e. turbine), and a storage capacity. When defining the electricity storage capacities available, it is also possible to define an electricity storage operation strategy. Once again, as EnergyPLAN uses PHES as a reference, the question asked in EnergyPLAN when defining an operation strategy is "Allow for simultaneous operation of turbine and pump: YES/NO", which is displayed in Figure 20.

| Electricity Storage                                                                                                                      |                       |               |                  | ( | Electricity         |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|------------------|---|---------------------|
|                                                                                                                                          | pacities Efficiencies | Fuel Ratio *) | Storage Capacity |   | storage             |
| Pump/Compressor                                                                                                                          | 0,8                   |               | U GWh            |   | system              |
| Turbine 0                                                                                                                                | 0,9                   | 0             |                  |   | 1                   |
| Allow for simultaneous operation of turbine and pump: No ") Fuel ratio = fuel input / electric output (for CAES technologies or similar) |                       |               |                  |   | $ \longrightarrow $ |

Figure 20: Electricity storage parameters and operation strategy in EnergyPLAN.

Historically, PHES (and other large-scale electricity storage) facilities have typically been constructed with a single penstock system as they were designed to maximise electricity generation from baseload power plants i.e. by charging during the night when electricity prices were low (due to a high percentage of baseload power)

and discharging during the day when electricity prices were high (due to a high demand). Therefore, they could not, or never needed to, charge and discharge at the same time. To simulate this scenario in EnergyPLAN, select NO for "Allow for simultaneous operation of turbine and pump". However, if energy storage devices are designed especially to integrate fluctuating renewable energy, there may be additional benefits when using PHES that can charge and discharge at the same time. This can be achieved in a single PHES facility by installing two penstocks, as displayed in Figure 21, or also by installing multiple single penstock system PHES facilities on the same energy system i.e. one can charge while the other is discharging at the same time. By using a double penstock system, the PHES introduces more flexibility onto the energy system and hence it can aid the integration of more renewable energy. As a result, this operating strategy is also possible in EnergyPLAN by selecting YES when asked "Allow for simultaneous operation of turbine and pump".

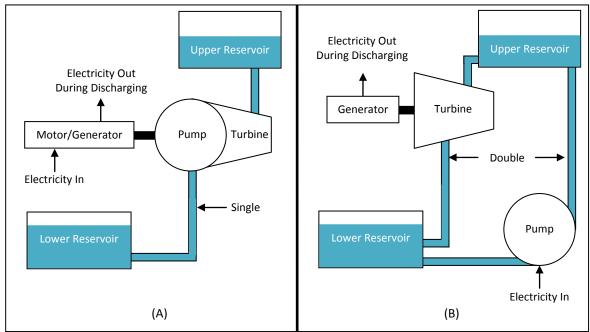



Figure 21: One PHES facility with (A) a single penstock system and (B) a double penstock system.

So how do these operating strategies affect the hourly operation of the system in EnergyPLAN? To illustrate this, an example is presented in Table 4-1 using the parameters defined in Table 4-2. As seen in Table 4-1, the primary advantage of a double penstock PHES facility relates to grid stabilisation: to see how the grid stabilisation percentage is calculated, see section 8.3 of the EnergyPLAN user manual. As the pump and turbine can operate together, a double penstock system can store excess wind production using the pump, while also producing grid stabilising power using the turbine. In contrast, the single penstock system has to prioritise one of these as the pump and turbine cannot operate together. From Table 4-1 it is clear that the single penstock system prioritises the pump and therefore, the excess electricity is sent to the PHES while the power plants (PP) must now provide the grid stabilising power. As a result, a system with single penstock PHES facility typically requires more fuel (i.e. more PP production) than a system with a double penstock PHES. Also, as a double penstock system. Therefore, double penstock system can achieve higher fluctuating renewable energy penetrations at lower storage capacities than a single penstock system.

| Table 4 | -1 |
|---------|----|
|---------|----|

Results for hours 1-10 when using a single and a double penstock PHES operation strategy in EnergyPLAN.

| hour                        | elec.<br>demand | wind<br>power | pp  | pump       | turbine     | storage  | stab.<br>-load | import | CEEP       | EEEP |
|-----------------------------|-----------------|---------------|-----|------------|-------------|----------|----------------|--------|------------|------|
| Double Penstock System: YES |                 |               |     |            |             |          |                |        |            |      |
| 1*                          | 397             | 194           | 0   | 0          | 203         | 136      | 170            | 0      | 0          | 0    |
| 2                           | 374             | 266           | 1   | 6          | 113         | 0        | 100            | 0      | 0          | 0    |
| 3*                          | 362             | 400           | 38  | 209        | 134         | 0        | 100            | 0      | 0          | 0    |
| 4                           | 346             | 522           | 0   | 400        | 224         | 40       | 100            | 0      | 0          | 0    |
| 5                           | 331             | 750           | 0   | <u>740</u> | 321         | 230      | 100            | 0      | 0          | 0    |
| 6                           | 323             | 616           | 0   | 557        | 264         | 346      | 100            | 0      | 0          | 0    |
| 7                           | 326             | 618           | 0   | 557        | 265         | 460      | 100            | 0      | 0          | 0    |
| 8                           | 335             | 860           | 0   | 893        | 369         | 714      | 100            | 0      | 0          | 0    |
| 9                           | 346             | 772           | 0   | 757        | 331         | 906      | 100            | 0      | 0          | 0    |
| 10                          | 354             | 672           | 0   | 606        | 288         | 1031     | 100            | 0      | 0          | 0    |
|                             |                 |               |     | Single P   | enstock Sys | stem: NO |                |        |            |      |
| 1                           | 397             | 194           | 0   | 0          | 203         | 4747     | 170            | 0      | 0          | 0    |
| 2                           | 374             | 266           | 114 | 6          | 0           | 4752     | 100            | 0      | 0          | 0    |
| 3                           | 362             | 400           | 171 | 209        | 0           | 4919     | 100            | 0      | 0          | 0    |
| 4                           | 346             | 522           | 224 | 101        | 0           | 5000     | 100            | 0      | 298        | 0    |
| 5                           | 331             | 750           | 0   | 0          | 321         | 4598     | 100            | 0      | <u>740</u> | 0    |
| 6                           | 323             | 616           | 264 | 502        | 0           | 5000     | 100            | 0      | 55         | 0    |
| 7                           | 326             | 618           | 0   | 0          | 265         | 4669     | 100            | 0      | 557        | 0    |
| 8                           | 335             | 860           | 369 | 414        | 0           | 5000     | 100            | 0      | 479        | 0    |
| 9                           | 346             | 772           | 0   | 0          | 331         | 4586     | 100            | 0      | 757        | 0    |
| 10                          | 354             | 672           | 288 | 517        | 0           | 5000     | 100            | 0      | 89         | 0    |

\*Values highlighted in red and green relate to section 4.7 of this report.

#### Table 4-2

Parameters used in EnergyPLAN for the sample calculations on the two PHES operation strategies.

| Parameter                                    | Capacity*      |
|----------------------------------------------|----------------|
| Electricity demand                           | 4 TWh          |
| Condensing power plants                      | 500 MW         |
| Wind energy                                  | 2000 MW        |
| Pump capacity                                | 1000 MW        |
| Turbine capacity                             | 1000 MW        |
| Pump efficiency                              | 0.8            |
| Turbine efficiency                           | 0.8            |
| Storage capacity                             | 5 GWh          |
| Regulation: Minimum grid stabilisation share | 0.3 (i.e. 30%) |

\*All values were entered using the default distributions provided when opening EnergyPLAN.

### 4.6.1 Storage capacity for the double penstock system strategy

It should be noted that when using a double penstock system, the storage capacity may never be recorded as full during the hourly values. This is due to the calculation procedure in EnergyPLAN. As stated previously, a double penstock system can charge using excess electricity, while also discharging to provide grid stabilisation. Therefore, at the beginning of each hour EnergyPLAN must decide how much energy will be stored due to excess electricity and how much will be discharged to provide grid stabilisation. To do this the following sequence is used by EnergyPLAN:

- 1. The amount of excess wind power can be stored is calculated i.e. is there enough pump capacity and storage capacity available to send the excess electricity.
- 2. It calculates the electricity that needs to be discharged to meet the grid stabilisation requirements.
- 3. Based on these figures, the electricity that must be imported or exported is evaluated.

Once again, by looking at an example this should become clear. Let's take the values from hour 887 in Table 4-3. At the beginning of this hour there was a demand of 442 MW and a wind production of 1200 MW. Therefore, by following the steps outlined above, EnergyPLAN did the following:

- The storage capacity from the hour before was 4351 MWh, while the total capacity was 5000 MWh. Therefore, the total capacity available for the next hour was 649 MWh, which equates to a pump demand of 812 MW (i.e. 649/0.8). Hence there is only room for 812 MW of excess electricity production in the storage during this hour.
- 2. As the total production during this hour is now 1200 MW of wind, there is no grid stabilising power operating. The regulation used states that 30% of all production must be grid stabilising. However, if the turbine starts producing power, it too will be adding to the production and hence the amount of grid stabilisation required will increase. For example, if the turbine provides 30% of the wind production, which is 360 MW (i.e. 0.3\*1200), then the total production is now 1560 MW, but 360/1560 is only 23%, which is less than 30%. Therefore, the total power that must come from the turbine must account for its own production also and is calculated from (see section 8.3 of the EnergyPLAN user manual for full details on grid stabilisation calculations [1]):

Turbine =  $0.3^{(Wind+Turbine)} = 0.3^{(1200+Turbine)} = 0.7$ Turbine = 360 = 7Turbine = 514 MW

As the turbine needs to produce 514 MW, it means that 643 MWh (514/0.8) must be removed from the storage facility, so the balance in the storage facility during this hour is 4351 + 649 - 643 = 4357 MWh.

3. Now that EnergyPLAN has evaluated that the maximum electricity it can store is 812 MW and the total electricity it needs for stabilisation is 514 MW, it can equate how much electricity is left for export, which is 1200 + 514 - 812 - 442 = 460 MW. Note that this has a tolerance of ±1 MW as the decimal place may be greater or less than 0.5.

An important issue to notice here is the value recorded for the storage facility at the end of the hour. Even though the value recorded was 4357 MWh, the storage capacity was full during the calculations i.e. after the pump demand was added: **4351** + **649** = 5000 MWh. Therefore, when analysing the results for a double penstock, the 'Maximum Storage' for the PHES facility may not register as the storage capacity, even though it has been full during the analysis.

For clarity purposes, let's look at another example: hour 5 from Table 4-1:

- 1. There is 1000 MW and 5000 MWh of pump and storage capacity available respectively.
- There is 750 MW of wind and 0 MW of grid stabilising power. Therefore, the turbine capacity required is: Turbine = 0.3\*(Wind+Turbine) => Turbine = 321 MW.
- 3. Now that the total production is 1071 MW (750+321), but the demand is only 331 MW, 740 MW is sent to the storage as there is sufficient pump and storage capacity available. Therefore, the balance for the storage is 592 MWh (740\*0.8) in and 401 MWh out (321/0.8), which means the value at the end of the hour is 40 + 592 401 = 231 MWh.
- 4. Finally, all the excess power was sent to the storage and all of the grid stabilising power was provided by the turbine, so no export or import occurred.

Finally, the single penstock is evaluated in the same way, except if excess power and grid stabilisation must be provided at the same time, the excess power is prioritised (i.e. pump operates) and the power plants (PP) provide the grid stabilisation (i.e. as the turbine cannot operate when the pump is operating).

| Hour | Elec.<br>Demand | Wind<br>Power | РР | Pump | Turbine | Storage | stab.<br>Ioad | Import | CEEP | EEEP |
|------|-----------------|---------------|----|------|---------|---------|---------------|--------|------|------|
| 885  | 500             | 1230          | 0  | 1000 | 527     | 4220    | 100           | 0      | 257  | 0    |
| 886  | 472             | 1212          | 0  | 975  | 519     | 4351    | 100           | 0      | 284  | 0    |
| 887  | 442             | 1200          | 0  | 812  | 514     | 4357    | 100           | 0      | 461  | 0    |
| 888  | 403             | 1008          | 0  | 804  | 432     | 4460    | 100           | 0      | 233  | 0    |
| 889  | 383             | 982           | 0  | 675  | 421     | 4474    | 100           | 0      | 345  | 0    |
| 890  | 363             | 1116          | 0  | 658  | 478     | 4402    | 100           | 0      | 574  | 0    |

# Table 4-3 Calculating the hour pump and turbine demand for a double penstock PHES.

# 4.7 Description of 'stab.-load' from EnergyPLAN results window

As displayed in Figure 22, there are a number of grid stabilisation regulations that can be specified under the Regulation tab. These are the requirements that must be met to ensure the reliable operation of the electric grid when intermittent renewable energy such as wind power is added to it: a description of the grid issues that occur when wind power is added is available in [58]. The regulation constraints in EnergyPLAN include the "Minimum grid stabilisation production share" (MGSPS), which specifies the percentage of production that must be from grid stabilising units (i.e. power plants, hydro, etc). It is important to remember that this is a percentage of total production and not total demand, which is outlined in detail in section 8.3 of the EnergyPLAN user manual [1].

| Electric grid stabilisation requirements: |                                |  |  |  |  |  |  |  |
|-------------------------------------------|--------------------------------|--|--|--|--|--|--|--|
| 0,3                                       |                                |  |  |  |  |  |  |  |
| 0                                         |                                |  |  |  |  |  |  |  |
| 0                                         |                                |  |  |  |  |  |  |  |
| 0                                         | Share of charge connection     |  |  |  |  |  |  |  |
| 0                                         | Share of max capacity          |  |  |  |  |  |  |  |
| 300                                       | MW                             |  |  |  |  |  |  |  |
| 0                                         | MW                             |  |  |  |  |  |  |  |
|                                           | 0.3<br>0<br>0<br>0<br>0<br>300 |  |  |  |  |  |  |  |

Figure 22: Grid stabilisation criteria in the EnergyPLAN model.

To measure if the system provided the MGSPS during each hour of the simulation, EnergyPLAN calculates the "stab.-load", as shown in Figure 23. This illustrates the percentage of the MGSPS that was satisfied during each hour. This section illustrates how the stab.-load is calculated.

| -                       | yPLAN 7.22: Tu  | rbine Capacity | Limited b | y PP         |            |                |         |                        |            |             |            |            |      |
|-------------------------|-----------------|----------------|-----------|--------------|------------|----------------|---------|------------------------|------------|-------------|------------|------------|------|
| <u>F</u> ile <u>E</u> d | it <u>H</u> elp |                |           |              |            |                |         |                        |            |             |            |            |      |
| <b>F</b>                | e' & <i>e</i>   |                |           | Close Window | Calculatio | n Time = 00:00 | :01     |                        |            |             |            |            |      |
|                         |                 |                |           |              |            |                |         |                        |            |             |            |            | *    |
|                         |                 |                |           |              |            |                |         |                        |            |             |            |            |      |
|                         |                 |                |           |              |            |                |         |                        | $\frown$   |             |            |            |      |
| V2G -                   | transH2 t:      | ransH2 HH      | -elec.    | HH-elec. H   | -elec.     | HH-H2          | HH-H2.  | HH-H2.                 | stab       | Import      | export     | CEEP       | EEEP |
| torage                  | electr.         | storage        | CHP       | HP           | EB         | Electr         | storage | e price <mark>s</mark> | load       | Ň           | •          |            |      |
| 0.00                    | 0.00            | 0.00           | 0.00      | 0.00         | 0.00       | 0.00           | 0.00    | 0.00                   | Percent    | 0.03        | 0.71       | 0.71       | 0.00 |
| 0.00                    | 0.00            | 0.00           | 0.00      | 0.00         | 0.00       | 0.00           | 0.00    | 0.00                   | rercent    | 1.00        | 0.71       | 0.71       | 0.00 |
|                         | 0               | 0              | 0         | O            | 0          | 0              | 0       | 0                      | 172        | 1           | 165        | 165<br>79  | 0    |
| ŏ                       | 0<br>0          | Ō              | 0<br>0    | 0<br>0       | 0<br>0     | 0<br>0         | 0<br>0  | ĮŌ                     | 140<br>181 | 1<br>3<br>4 | 79<br>63   | 63         | 0    |
|                         | 0<br>0          | 0<br>0         | 0         | 0<br>0       | 0<br>0     | 0<br>0         | 0       |                        | 166<br>177 |             | 62<br>100  | 62<br>100  | 0    |
| Ō                       | Ō               | Ō              | Ō         | 0            | Ō          | Ō              | Ō       | ĮŌ                     | 162        |             | 22         | 22         | Ō    |
|                         | 0<br>0          | 0<br>0         | 0<br>0    | 0<br>0       | 0<br>0     | 0<br>0         | 0       | 0                      | 203<br>188 | 1           | 19<br>25   | 19<br>25   | 0    |
|                         | 0<br>0          | 0              | 0         | 0<br>0       | 0          | 0<br>0         | 0       |                        | 174<br>183 | 1           | 55<br>67   | 55<br>67   | 0    |
| Ō                       | 0               | õ              | ō         | 0            | Ō          | Ō              | õ       | Ō                      | 158        | 7           | 137        | 137        | Ō    |
| 0                       | 0               | 0              | 0         | 0            | 0          | 0              | 0       | 0                      | 172        | 6           | 176        | 176        | 0    |
|                         | 0<br>0          | 0<br>0         | 0<br>0    | 0<br>0       | 0          | 0<br>0         | 0       | 0                      | 173<br>333 | 3<br>192    | 81<br>1506 | 81<br>1506 | 0    |
| 0                       | 0               | 0              | 0         | 0            | 0          | 0              | 0       | 0                      | 100        | 0           | 0          | 0          | 0    |
| 0                       | 0               | 0              | 0         | 0            | 0          | 0              | 0       | 0                      | 170        | a           | 0          | 0          | o    |
| Ō                       | Ō               | Ō              | Ö         | Ō            | 0          | Ō              | Ō       | 10                     | 100        | ğ           | Ō          | Ō          | Ō    |
|                         | 0<br>0          | 0<br>0         | 0<br>0    | 0<br>0       | 0<br>0     | 0<br>0         | 0<br>0  | 0                      | 100<br>100 | 8           | 0<br>0     | 0<br>0     | 0    |
|                         | 0<br>0          | 0<br>0         | 0         | 0<br>0       | 0<br>0     | 0<br>0         | 0       | 0                      | 100<br>100 | 8           | 0          | 0          | 0    |
| Ō                       | Ō               | Ō              | ō         | 0            | Ō          | Ō              | Ō       | Ō                      | 100        | b b         | ō          | ō          | 0    |
|                         | 0<br>0          | 0<br>0         | 0<br>0    | 0<br>0       | 0<br>0     | 0<br>0         | 0<br>0  | 0                      | 100<br>100 | ŏ           | 0          | 0<br>0     | 0    |
| 0                       | 0<br>0          | 0<br>0         | 0<br>0    | 0<br>0       | 0<br>0     | 0<br>0         | 0       | 8                      | 100<br>100 |             | 0          | 0          | 0    |
| ŏ                       | Ō               | Ō              | Ŭ<br>0    | Ō            | Ō          | Ō              | Ō       | ð                      | 100        | / 0         | õ          | õ          | Ō    |
|                         | 0<br>0          | 0<br>0         | ŏ         | 0<br>0       | 0<br>0     | 0<br>0         | 0<br>0  |                        | 100<br>100 |             | 0<br>0     | 0<br>0     | 0    |
| 0<br>0                  | 0<br>0          | 0              | Ő         | Ő            | Ő          | 0              | Ő       | ŏ,                     | 100        | 0           | Ő          | Ő          | 0 -  |

Figure 23: Stab. Load results displayed in EnergyPLAN.

In section 8.3 of the EnergyPLAN user manual, it states that the percentage of electricity production from grid stabilising units, GridStab, is found from:

$$GridStab = \frac{e_{Stab}}{d_{Stab}} * 100 \tag{4}$$

Where estab is the total electricity production from grid stabilising units and dstab is the minimum grid stabilisation production share that was specified in EnergyPLAN (as shown in Figure 22). Using this value the stab.-load is then calculated from:

$$stab.-load = \frac{GridStab}{MGSPS}$$
(5)

To make this clear, let's look at hour 1 for a double penstock system in Table 4-1. In hour 1 of Table 4-1, all of the production units are highlighted in red and all of the demand units are highlighted in green. Therefore, for hour 1 the total production is 397 MW, with 203 MW produced by the turbine and 194 MW produced by wind power. However, only the PHES turbine provides grid stabilising power and as a result, the GridStab value for this hour is (203/397)\*100 = 51%. However, the MGSPS required is 30%, see Table 4-2 and Figure 22. Therefore, the stab.-load is 51%/30% = 170%, as displayed in Table 4-1.

Let's calculate the stab.-load for hour 3 of the double penstock system in Table 4-1 also. It is clear from Table 4-1 that during this hour the total production is 572 MW, with 400 MW from wind power, 38 MW from power plants, and 134 MW from the PHES turbine. As specified in the EnergyPLAN user manual, both power plants and the PHES turbine can provide grid stabilising power. Therefore, the total grid stabilising power production for hour 3 is 172 MW (38+134). This means that GridStab = (172/572)\*100 = 30% and stab.load=30%/30% = 100%.

### 4.8 Abbreviations for the Results window

In the results window, there are a number of columns which represent various technologies within the EnergyPLAN simulation.

| Abbreviation     | Input                                                                                                                                                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| elec.demand      | "Sum(Demand excl. elec. Heating)" under the Input->ElectricityDemand tab.                                                                                                                                                                                                                     |
| elec.dem cooling | "Electricity Consumption" under the Input->Cooling tab.                                                                                                                                                                                                                                       |
| Fixed Exp/Imp    | "Fixed Import/Export" under the Input->ElectricityDemand tab                                                                                                                                                                                                                                  |
| district heating | Sum of "Demand" under Groups I, II, and 3 of Input->DistrictHeating tab.                                                                                                                                                                                                                      |
| wind power       | "Estimated Post Correction Production" for the renewable energy selected on the first row of "Renewable Energy Source" under the Input->RenewableEnergy tab.                                                                                                                                  |
| PV               | "Estimated Post Correction Production" for the renewable energy selected on the second row of "Renewable Energy Source" under the Input->RenewableEnergy tab.                                                                                                                                 |
| Wave power       | "Estimated Post Correction Production" for the renewable energy selected on the<br>third row of "Renewable Energy Source" under the Input->RenewableEnergy tab.                                                                                                                               |
| River hydro      | "Estimated Post Correction Production" for the renewable energy selected on the<br>fourth row of "Renewable Energy Source" under the Input->RenewableEnergy tab.                                                                                                                              |
| Hydro power      | "Estimated annual production" in the "Hydro Power" section under the Input-<br>>RenewableEnergy tab.                                                                                                                                                                                          |
| Hydro pump       | Operation of the hydro pump. The capacity is defined in "Pump Capacity" in the "Hydro Power" section under the Input->RenewableEnergy tab.                                                                                                                                                    |
| Hydro storage    | Energy in the hydro storage. The capacity is defined in "Storage" in the "Hydro<br>Power" section under the Input-RenewableEnergy tab.                                                                                                                                                        |
| Hydro Wat-Sup    | Incoming water to the hydro storage. It is defined in "Annual Water supply" in the "Hydro Power" section under the Input->RenewableEnergy tab.                                                                                                                                                |
| Hydro Wat-Loss   | Sometimes the water flowing into the hydro plant exceeds the demand required and hence, water has to go through the spillway and it is lost.                                                                                                                                                  |
| solar thermal    | Sum of all the "Result TWh/year" at the end of all the "Solar thermal" inputs under Groups I, II, and 3 of Input->DistrictHeating tab.                                                                                                                                                        |
| cshp1 heat       | "DH prod" for the "DH Gr.1" row under the Input->Industry tab.                                                                                                                                                                                                                                |
| waste1 heat      | "DH production" in the first "DH Gr. 1" row under the Input->Waste tab.                                                                                                                                                                                                                       |
| DHP heat         | Demand from district heating units under the input "Demand" of the "Group 1" section in the Input->DistrictHeating tab.                                                                                                                                                                       |
| cshp2 heat       | "DH prod" for the "DH Gr.2" row under the Input->Industry tab.                                                                                                                                                                                                                                |
| waste2 heat      | "DH production" in the first "DH Gr. 2" row under the Input->Waste tab.                                                                                                                                                                                                                       |
| Geoth2 heat      | This is the "DH production" produced by the "Geothermal operated by absorption hear pump on steam from waste CHP plants" for the "DH Gr.2" under the Input-<br>>Waste tab.                                                                                                                    |
| Geoth2 steam     | This is the "Steam for Heat Pump" produced by the "Geothermal operated by absorption hear pump on steam from waste CHP plants" for the "DH Gr.2" under the Input->Waste tab.                                                                                                                  |
| Geoth2 storage   | This is the "Steam Storage" produced by the "Geothermal operated by absorption hear pump on steam from waste CHP plants" for the "DH Gr.2" under the Input-<br>>Waste tab.                                                                                                                    |
| chp2 heat        | The amount of heat produced from the CHP units in "Group 2" of the Input-<br>>DistrictHeating tab. The capacity and thermal efficiency of CHP units available to<br>produce this heat are defined in the "CHP" & "Therm." inputs respectively, which are<br>also under the "Group 2" section. |

#### Table 4-4: Abbreviations displayed in the results window of the EnergyPLAN model.

# FINDING AND INPUTTING DATA INTO ENERGYPLAN January 26, 2015

| Abbreviation      | Input                                                                                                                                                                                                                                                                                                                     |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hp2 heat          | The amount of heat produced from the Heat Pump units in "Group 2" of the Input-<br>>DistrictHeating tab. The capacity and coefficient of performance for the heat pump<br>units available to produce this heat are defined in the "Heat Pump" & "COP" inputs<br>respectively, which are also under the "Group 2" section. |
| boiler heat       | The amount of heat produced from the boiler units in "Group 2" of the Input-<br>>DistrictHeating tab. The capacity and efficiency for the boiler units available to<br>produce this heat are defined in the "Boiler" & "Therm." inputs respectively, which<br>are also under the "Group 2" section.                       |
| EH2 heat          | Heat produced from the electric boiler in group 2 of district heating. This occurs if CEEP regulation number 4 is used under the Regulation tab.                                                                                                                                                                          |
| ELT2 heat         | Heat produced from the Electrolyser in "Group 2" under the Input->ElecStorage tab.                                                                                                                                                                                                                                        |
| storage CHP gr2   | Energy available in "Heat storage gr.2" for CHP under the Input->DistrictHeating tab.                                                                                                                                                                                                                                     |
| heat2-balance     | The balance between the heat produced (i.e. from Industrial CHP, Waste,<br>Geothermal, CHP, HP, Boilers, Electric Boilers, and Electrolysers), and the heat<br>demand (i.e. "Demand input) under "Group 2" in the Input->DistrictHeating tab.                                                                             |
| cshp3 heat        | "DH prod" for the "DH Gr.3" row under the Input->Industry tab.                                                                                                                                                                                                                                                            |
| waste3 heat       | "DH production" in the first "DH Gr. 3" row under the Input->Waste tab.                                                                                                                                                                                                                                                   |
| Geoth3 heat       | This is the "DH production" produced by the "Geothermal operated by absorption hear pump on steam from waste CHP plants" for the "DH Gr.3" under the Input-<br>>Waste tab.                                                                                                                                                |
| Geoth3 steam      | This is the "Steam for Heat Pump" produced by the "Geothermal operated by absorption hear pump on steam from waste CHP plants" for the "DH Gr.3" under the Input->Waste tab.                                                                                                                                              |
| Geoth3 storage    | This is the "Steam Storage" produced by the "Geothermal operated by absorption hear pump on steam from waste CHP plants" for the "DH Gr.3" under the Input-<br>>Waste tab.                                                                                                                                                |
| chp3 heat         | The amount of heat produced from the CHP units in "Group 3" of the Input-<br>>DistrictHeating tab. The capacity of CHP units available to produce this heat is<br>defined in the "CHP" input, which is also under the "Group 3" section.                                                                                  |
| hp3 heat          | The amount of heat produced from the Heat Pump units in "Group 3" of the Input-<br>>DistrictHeating tab. The capacity and coefficient of performance for the heat pump<br>units available to produce this heat are defined in the "Heat Pump" & "COP" inputs<br>respectively, which are also under the "Group 3" section. |
| boiler heat r     | The amount of heat produced from the boiler units in "Group 3" of the Input-<br>>DistrictHeating tab. The capacity and efficiency for the boiler units available to<br>produce this heat are defined in the "Boiler" & "Therm." inputs respectively, which<br>are also under the "Group 3" section.                       |
| EH3 heat          | Heat produced from the electric boiler in "Group 3" of district heating. This occurs if CEEP regulation number 5 is used under the Regulation tab.                                                                                                                                                                        |
| ELT3 heat         | Heat produced from the Electrolyser in "Group 3" under the Input->ElecStorage tab.                                                                                                                                                                                                                                        |
| storage CHP gr3   | Energy available in "Heat storage gr.2" for CHP under the Input->DistrictHeating tab.                                                                                                                                                                                                                                     |
| heat3-balance     | The balance between the heat produced (i.e. from Industrial CHP, Waste,<br>Geothermal, CHP, HP, Boilers, Electric Boilers, and Electrolysers), and the heat<br>demand (i.e. "Demand input) under "Group 3" in the Input->DistrictHeating tab.                                                                             |
| flexible eldemand | Sum of "Flexible demand (1 day)", "Flexible demand (1 week)", and "Flexible demand (4 weeks)" inputs under the Input->ElectricityDemand tab PLUS the electricity demand for "Electricity (Dump Charge)" under the Input->Transport tab.                                                                                   |
| hp elec.          | The electricity required to power the heat pumps in "Group 2" and "Group 3" under the Input->DistrictHeating tab.                                                                                                                                                                                                         |

# January 26, 2015 FINDING AND INPUTTING DATA INTO ENERGYPLAN

| Abbreviation    | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cshp elec.      | Sum of "Electricity production" in the first "DH Gr.1", "DH Gr.2", and "DH Gr.3" rows<br>in the Waste section only under the Input->Waste tab PLUS sum of "Electricity prod"                                                                                                                                                                                                                                                                                   |
| chp elec.       | for "DH Gr.1", "DH Gr.2", and "DH Gr.3" under the Input->Industry tab.<br>The electricity produced by the CHP units in "Group 2" and "Group 3" under the<br>Input->DistrictHeating tab.                                                                                                                                                                                                                                                                        |
| pp elec.        | The electricity produced by the "Condensing" power plant units in "Group 3" under the Input->DistrictHeating tab.                                                                                                                                                                                                                                                                                                                                              |
| pp2 elec.       | The electricity produced by the "PP2" power plant units in "Group 3" under the Input-<br>>DistrictHeating tab.                                                                                                                                                                                                                                                                                                                                                 |
| geother. Elec.  | The electricity produced by "Geothermal Power" and "Nuclear Power" under the Input->RenewableEnergy tab.                                                                                                                                                                                                                                                                                                                                                       |
| pump elec.      | The electricity demand required to power the "Pump/Compressor" in the "Electricity Storage" section under the Input->ElecStorage tab.                                                                                                                                                                                                                                                                                                                          |
| turbine elec.   | The electricity produced by the "Turbine" in the "Electricity Storage" section under the Input->ElecStorage tab.                                                                                                                                                                                                                                                                                                                                               |
| pump-storage    | The energy contained in the "Storage Capacity", which is in the "Electricity Storage" section under the Input->ElecStorage tab. The total energy put into the storage is equal to the "pump elec." multiplied by the "Pump/Compressor" efficiency and the total energy removed is equal to the "turbine elec." divided by the "Turbine" efficiency.                                                                                                            |
| ELT2 elec.      | The electricity consumed by the Electrolyser in "Group 2" under the Input-<br>>ElecStorage tab.                                                                                                                                                                                                                                                                                                                                                                |
| H2stor elt. 2   | Energy stored in the form of fuel in the "Hydrogen Storage" of "Group 2" under the Input->ElecStorage tab.                                                                                                                                                                                                                                                                                                                                                     |
| ELT3 elec.      | The electricity consumed by the Electrolyser in "Group 3" under the Input-<br>>ElecStorage tab.                                                                                                                                                                                                                                                                                                                                                                |
| H2stor elt. 3   | Energy stored in the form of fuel in the "Hydrogen Storage" of "Group 3" under the Input->ElecStorage tab.                                                                                                                                                                                                                                                                                                                                                     |
| V2G Demand      | This is the electricity required by the smart/V2G electric vehicles for transport<br>purposes only (i.e. not the demand used when acting as a grid storage facility) and it<br>is obtained by multiplying the "Electricity (Smart Charge)" input by the "Efficiency<br>(grid to battery)" input under the Input->Transport tab. Note that the "Electricity<br>(Dump Charge)" input is treated separately in the "flexible eldemand" results.                   |
| V2G Charge      | This is the electricity demand taken from the grid for the smart/V2G electric vehicles<br>and is from the "Electricity (Smart Charge)" input under the Input->Transport tab.<br>Note that this could be higher if the V2G is used as a storage facility for the grid (i.e.<br>energy is passed in and out of the cars). Note also that the "Electricity (Dump<br>Charge)" input is treated separately in the "flexible eldemand" results already<br>discussed. |
| V2G Discha.     | This is the amount of electricity supplied from the smart/V2G cars to the grid. Its maximum value is obtained by multiplying the "Capacity of battery to grid connection" input by the "Share of parked cars grid connected". When comparing this value to other hourly values, the "Efficiency (battery to grid)" will also need to be considered.                                                                                                            |
| V2G Storage     | This is the amount of energy in the "Battery storage capacity" under the Input-<br>>Transport tab. Energy can be removed at 100% efficiency from this storage for<br>transport (i.e. for the V2G Demand). However, the total energy put into the storage is<br>equal to the "V2G Charge" multiplied by the "Efficiency (grid to battery)" and the<br>total energy removed is equal to the "V2G Discha." divided by the "Efficiency (battery<br>to grid).       |
| transH2 electr. | The electricity consumed by the electrolyser which creates hydrogen for the transport sector. The value depends on the capacity and efficiency defined for "Transport" under the Input->ElecStorage tab, as well as the "H2 (Produced by Electrolysers) under the Input->Transport tab.                                                                                                                                                                        |

| Abbreviation    | Input                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| transH2 storage | This is the "Hydrogen Storage" capacity for "Transport" contained in the Input-<br>>ElecStorage tab.                                                                                                                                                                                                                                                                                                                       |
| HH-elec.CHP     | The "Estimated Electricity Production" from the "H2 micro CHP", "Ngas micro CHP", and the "Biomass micro CHP" under the Input->Individual tab.                                                                                                                                                                                                                                                                             |
| HH-elec. HP     | The "Estimated Electricity Production" from the "Heat Pump" under the Input-                                                                                                                                                                                                                                                                                                                                               |
|                 | >Individual tab. This will increase as the "Capacity Limit" is reduced, as an electric<br>boiler will supply the shortfall in heat supply at peak times.                                                                                                                                                                                                                                                                   |
| HH-elec. EB     | The "Estimated Electricity Production" from the "Electric heating" under the Input-<br>>Individual tab.                                                                                                                                                                                                                                                                                                                    |
| HH-H2. Electr.  | The electricity consumed by the "Micro CHP" electrolyser under the Input-<br>>ElecStorage tab.                                                                                                                                                                                                                                                                                                                             |
| HH-H2 storage   | The "Hydrogen Storage" capacity for "Micro CHP" under the Input->ElecStorage tab.                                                                                                                                                                                                                                                                                                                                          |
| HH-H2 prices    | The "H2 micro CHP" will only operate if it is cheaper than using a conventional boiler.<br>Therefore, EnergyPLAN calculates the price of purchasing hydrogen and compares it<br>to the price of operating a conventional boiler.                                                                                                                                                                                           |
| HH-heat Demand  | Sum of "Heat Demand" for the "H2 micro CHP", "Ngas micro CHP", "Biomass micro CHP", "Heat Pump", and "Electric Heating" under the Input->Individual tab.                                                                                                                                                                                                                                                                   |
| HH-heat CHP+HP  | Sum of "Heat Demand" for the "H2 micro CHP", "Ngas micro CHP", "Biomass micro CHP", and "Heat Pump" under the Input->Individual tab.                                                                                                                                                                                                                                                                                       |
| HH-heat Boiler  | This is the total amount of heat supplied by the boiler component only in the "H2 micro CHP", "Ngas micro CHP", and "Biomass micro CHP". This is dependent on the "Heat Demand" and the "Capacity Limit" of these technologies, which are defined under the Input->Individual tab.                                                                                                                                         |
| HH-heat Solar   | The sum of the "Solar Thermal Output" which was built in conjunction with the "H2 micro CHP", "Ngas micro CHP", "Biomass micro CHP", "Heat Pump", and "Electric Heating" under the Input->Individual tab.                                                                                                                                                                                                                  |
| HH-heat Storage | The operation of the "Heat Storage" which was built in conjunction with the "H2 micro CHP", "Ngas micro CHP", "Biomass micro CHP", and "Heat Pump" under the Input->Individual tab.                                                                                                                                                                                                                                        |
| HH-heat Balance | This is the balace between supply and demand for the "H2 micro CHP", "Ngas micro CHP", "Biomass micro CHP", "Heat Pump", "Electric Heating", "Heat Storage", and "Solar Thermal" under the Input->Individual tab. Note, at least one full row needs to be complete for the heat balance to be activated.                                                                                                                   |
| stabload        | This needs to be 100% to ensure that the "Minimum grid stabilisation production share" under the Regulation tab is met. It is explained in detail in the User's Guide to EnergyPLAN.                                                                                                                                                                                                                                       |
| import          | This is the amount of electricity that needed to be imported due to a shortage in supply or to ensure grid constraints were met. Note that this can exceed the "Maximum imp./exp. Cap:" defined under the Regulation tab.                                                                                                                                                                                                  |
| export          | This is the amount of electricity that needed to be exported due to an oversupply or to ensure grid constraints were met. Note that this can exceed the "Maximum imp./exp. Cap:" defined under the Regulation tab.                                                                                                                                                                                                         |
| CEEP            | This is the amount of electricity that was exported which did exceed the "Maximum imp./exp. Cap:" defined under the Regulation tab.                                                                                                                                                                                                                                                                                        |
| EEEP            | This is the amount of electricity that was exported without exceeding the "Maximum imp./exp. Cap:" defined under the Regulation tab.                                                                                                                                                                                                                                                                                       |
| Nordpool prices | This is the "Price Distribution" in the "External Electricity Market Definition" section<br>under the Regulation tab AFTER it has been manipulated by the "Addition factor" and<br>the "Multiplication Factor".                                                                                                                                                                                                            |
| Nordpool-prod   | This is the "Price Distribution" in the "External Electricity Market Definition" section<br>under the Regulation tab AFTER it has been manipulated by the "Addition factor" and<br>the "Multiplication Factor". Also, for a market simulation, the price elasticity is also<br>considered. It is used to determine the units which can afford to buy electricity (i.e.<br>heat pumps, electrolysers, energy storage, etc). |

# January 26, 2015 FINDING AND INPUTTING DATA INTO ENERGYPLAN

| Abbreviation      | Input                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System prices     | The system price is the resulting price after the NordPool price has been influenced<br>by the import/export of electricity as defined by the price electricity input in the<br>Regulation tab. The system price is lower (than the NordPool price) when there is<br>export and higher when there is import.                                          |
| DKmarket prices   | This is the market price for the energy system being simulated, which is calculated based on the units operating, their capacities, and their corresponding costs from the Cost->Fuel and the Cost->Operation tabs.                                                                                                                                   |
| Btl-neck prices   | This is the price difference between the external market price "System Price" and the market being simulated "DKmarket prices".<br>This is the cost of importing electricity and it is obtained by multiplying the "import" by the "System Price". The value displayed needs to be multiplied by 1000 to obtain                                       |
| export payments   | the true figure and it is a monetary value.<br>This is the revenue from exporting electricity and it is obtained by multiplying the<br>"export" by the "System Price". The value displayed needs to be multiplied by 1000 to<br>obtain the true figure and it is a monetary value.                                                                    |
| blt-neck payment  | These are the costs that occur due to bottlenecks that occur when import/export reaches its maximum capacity. It is calculated by multiplying the "Btl-neck prices" by the import/export capacity. Note that this is then divided by 2, as the revenue from bottlenecks is normally split between the 2 operators on each side of the interconnector. |
| addexport payment | The is the cost/revenue that occurs due to the "Fixed Import/Export" which was defined under the Input->ElectricityDemand tab. It is the "Fixed Exp/Imp" in the results window multiplied by the "DKmarket prices".                                                                                                                                   |
| DHP and Boilers   | This is the amount of gas consumed for "DH" systems without CHP, which is "Group 1", plus the gas consumed by the boilers in "Group 2" and "Group 3", under the Input->DistrictHeating tab.                                                                                                                                                           |
| СНР2 СНР3         | This is the amount of gas consumed for CHP plants in "Group 2" and "Group 3" under the Input->DistrictHeating tab.                                                                                                                                                                                                                                    |
| PP CAES           | This is the amount of gas consumed for the "Condensing" and "PP2" units in "Group 3", under the Input->DistrictHeating tab, as well as for CAES energy storage facilities under the Input->ElecStorage tab.                                                                                                                                           |
| Individual        | This is the amount of gas consumed for the "Ngas boiler" and the "Ngas micro CHP", under the Input->Individual tab.                                                                                                                                                                                                                                   |
| Transp.           | This is the amount of "Ngas" consumed under the Input->Transport tab.                                                                                                                                                                                                                                                                                 |
| Indust. Various   | This is the amount of "Ngas" consumed by "Industry" and "Various", under the Input-<br>>Industry tab.                                                                                                                                                                                                                                                 |
| Demand Sum        | The is the total gas demand: "DHP and Boilers" + "CHP2 CHP3" + "PP CAES" +<br>"Individual" + "Transp." + "Indust. Various".                                                                                                                                                                                                                           |
| Biogas            | This is the "Input to Gas Grid" from the "Biogas Plant" under the Input->Biomass Conversion tab.                                                                                                                                                                                                                                                      |
| Syngas            | This is the "Input to Gas Grid" from the "Gasification Plant" under the Input->Biomass Conversion tab.                                                                                                                                                                                                                                                |
| Storage           | This is the amount of gas consumed from (positive) or sent to (negative) the gas storage facility during each hour of the simulation.                                                                                                                                                                                                                 |
| Storage Content   | This is the amount of gas in the gas storage facility.                                                                                                                                                                                                                                                                                                |
| Sum               | This is the difference between demand and supply for gas.                                                                                                                                                                                                                                                                                             |
| Import            | If the "Sum" results indicate that there is a shortage in gas, then it is imported.                                                                                                                                                                                                                                                                   |
| Export            | If the "Sum" results indicate that there is excess gas, then it is exported.                                                                                                                                                                                                                                                                          |

# 4.9 Understanding the Print Results

Instead of using the Results window in EnergyPLAN, it is also possible to print a summary of the main results on 2 x A4 pages. An example of this is presented in Figure 24 below.

# January 26, 2015 FINDING AND INPUTTING DATA INTO ENERGYPLAN

| Electricity demand (<br>Fixed demand                                                                                                                                                                                                                                                                                                                                                                                | CEES                                                                                                                             | A_2050                                                                   | _Rec                                                           | _MI_2                                                                                                         | 0131                                                          | 2_Co                                                                                                           | mplete.t                                                                                                                                                                                                                                                                                         | xt                                   |                                   |                                 |                                                                                           |                                                                    | Th                                                                                         | ne Er                                                                                     | nergyl                                                       | PLAN                                                                                                              | l mod                                                                                     | el 12                                | 2.0                                                                                                                                                                          | A                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Electric heating + H<br>Electric cooling<br>District heating (TW                                                                                                                                                                                                                                                                                                                                                    | 21,80<br>P 1,65<br>0,00                                                                                                          | Flexible deman<br>Fixed imp/exp.<br>Transportation<br>Total<br>Gr.1 Gr.2 | 0,00<br>8,22<br>35,74                                          | 3 Sum                                                                                                         | B                                                             | Aroup 2:<br>CHP<br>Heat Pump<br>Boiler<br>Aroup 3:                                                             | Capacitie<br>MW-e M.<br>1945 124<br>300 105<br>348                                                                                                                                                                                                                                               | I∕s elec<br>⊧1 0,58<br>i0            | 0,37                              | OP<br>3,50                      | KEOL re<br>Minimum<br>Stabilisa<br>Minimum                                                | n Stabilisati<br>tion share o<br>n CHP gr 3                        | ion share<br>of CHP                                                                        | 2345800<br>e 0,0<br>0,0                                                                   | 00<br>00<br>0 MW                                             | Hyd                                                                                                               | l Price leve<br>Iro Pump:<br>Iro Turbine:                                                 | Capacitie                            | GWh ele                                                                                                                                                                      | Efficiencie<br>ec. Ther.<br>0,85<br>0,85                                |
| District heating dem<br>Solar Thermal<br>Industrial CHP (CSI-<br>Demand after solar                                                                                                                                                                                                                                                                                                                                 | and<br>HP)<br>and CSHP                                                                                                           | 2,96 11,09<br>1,25 2,09<br>0,00 0,00<br>1,71 9,00                        | 9 24,3<br>5 0,9<br>0 2,6<br>4 20,7                             | 14 38,3<br>11 4,2<br>15 2,6<br>18 31,5                                                                        | 9 C<br>0 H<br>5 E<br>4 C                                      | CHP<br>leat Pump<br>Soiler<br>Condensing                                                                       | 2500 129<br>600 210<br>757<br>10333                                                                                                                                                                                                                                                              | 00<br>14<br>0,60                     | 0,95                              | 3,50                            |                                                                                           | mp maximu<br>m import/ex<br>ame : P                                | ort                                                                                        | e 0,5<br>(V_2008.t                                                                        | 0 MW                                                         | Elec<br>Elec<br>Elec<br>Ely.                                                                                      | ctrol. Gr.2:<br>ctrol. Gr.3:<br>ctrol. trans.:<br>MicroCHP:<br>ES fuel ratio              | : 0                                  | 0 0<br>0 0<br>477 0                                                                                                                                                          | 0,00 0,00<br>0,00 0,00<br>0,73<br>0,00                                  |
| Wind<br>Offshore Wind<br>Photo Voltaic<br>Wave Power<br>Hydro Power<br>Geothermal/Nuclear                                                                                                                                                                                                                                                                                                                           | 4454 MM<br>10173 MM<br>5000 MM<br>300 MM<br>0 MM<br>r 0 MM                                                                       | 41,75 T<br>6,46 T<br>0,79 T<br>0 T                                       | Wh/year<br>Wh/year<br>Wh/year<br>Wh/year<br>Wh/year<br>Wh/year | 0,00 Grid<br>0,00 stab<br>0,00 satio<br>0,00 shar                                                             | ili- F<br>on E<br>e G                                         | leatstorage<br>lixed Boller:<br>lectricity pr<br>àr.1:<br>àr.2:<br>àr.3:                                       | gr.2: 0,5 Per                                                                                                                                                                                                                                                                                    | Cent gr<br>Waste<br>0 0,00           | :3: 10 G<br>.3: 0,5 P<br>(TWh/yea | er cent                         | Depende<br>Average<br>Gas Stor<br>Syngas d                                                |                                                                    | 0,02                                                                                       | 2 DKK/N<br>1 DKK/N<br>0 GWh<br>2 MW                                                       | /Whpr.MN<br>/Wh                                              | Trar                                                                                                              | nsport<br>isehold<br>ustry                                                                | 0,00 0                               | Ngas           0,00         0,00           0,00         0,00           0,00         0,00           0,00         0,00           0,00         0,00           0,00         0,00 | 0 1,13                                                                  |
| Output                                                                                                                                                                                                                                                                                                                                                                                                              | WA                                                                                                                               | RNING!                                                                   | !: (1)                                                         | Critica                                                                                                       |                                                               |                                                                                                                | -1-                                                                                                                                                                                                                                                                                              |                                      |                                   |                                 |                                                                                           |                                                                    |                                                                                            |                                                                                           |                                                              |                                                                                                                   |                                                                                           |                                      |                                                                                                                                                                              |                                                                         |
| Demand                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  | District Hea<br>Produc                                                   |                                                                |                                                                                                               |                                                               |                                                                                                                | Consu                                                                                                                                                                                                                                                                                            | Imption                              |                                   |                                 |                                                                                           | Elec                                                               | ctricity                                                                                   |                                                                                           |                                                              |                                                                                                                   | Balance                                                                                   |                                      | E                                                                                                                                                                            | xchange                                                                 |
| Distr.                                                                                                                                                                                                                                                                                                                                                                                                              | Waste<br>Solar CSHP                                                                                                              | +                                                                        |                                                                | LT Boiler                                                                                                     |                                                               | ance demai                                                                                                     | Flex.&                                                                                                                                                                                                                                                                                           | Elec-                                | Hyd<br>EH Purr                    |                                 |                                                                                           | -ly- Geo<br>dro therma                                             | - Was                                                                                      |                                                                                           |                                                              | tab-<br>bad Imp                                                                                                   | Exp                                                                                       | CEEP E                               | EP Imp                                                                                                                                                                       | yment<br>Exp                                                            |
| MW<br>January 6657                                                                                                                                                                                                                                                                                                                                                                                                  | MW MW                                                                                                                            | MW MW 446 1332                                                           |                                                                | MW MW                                                                                                         | MW 1                                                          | -2 2787                                                                                                        | MW MW                                                                                                                                                                                                                                                                                            |                                      | MW MW                             |                                 | MW                                                                                        | MW MW                                                              | 0 200                                                                                      |                                                                                           | MW 9                                                         |                                                                                                                   |                                                                                           |                                      | WW Mill                                                                                                                                                                      | lion DKK                                                                |
| February 6790<br>March 5921<br>April 4928<br>May 4066<br>June 2347                                                                                                                                                                                                                                                                                                                                                  | 401 1307<br>454 1307<br>692 1307<br>758 1306<br>624 1270                                                                         | 391 873<br>308 990<br>170 842<br>63 718<br>17 241                        | 2856<br>2459<br>1853<br>1188<br>237                            | 0 782<br>0 311<br>0 74<br>0 3<br>0 0                                                                          | 73<br>175<br>80<br>24<br>2<br>1                               | 4 2759<br>11 2661<br>-34 2361<br>28 2307<br>-43 2246                                                           | 1399 1079<br>1422 944<br>1382 698<br>1394 459                                                                                                                                                                                                                                                    | 4405<br>4179<br>4162<br>4434<br>4113 | 175<br>80                         | 0 0<br>0 0<br>0 0               | 0 8139<br>0 7306<br>0 6853<br>0 7327                                                      | 0<br>0<br>0                                                        | 0 200<br>0 200<br>0 200<br>0 200<br>0 200<br>0 200                                         | 0 1539<br>0 1745<br>0 1492<br>0 1276                                                      | 207<br>216<br>224<br>192                                     | 100<br>100<br>100<br>100                                                                                          | 0 96<br>0 148<br>0 141<br>0 399<br>0 302                                                  | 96<br>148<br>141<br>399<br>302       | 0<br>0<br>0                                                                                                                                                                  | 0 29<br>0 29<br>0 30<br>0 94<br>0 77                                    |
| July 2347<br>August 2347<br>September 3109<br>October 4179<br>November 5196                                                                                                                                                                                                                                                                                                                                         | 685 1264<br>644 1266<br>581 1300<br>398 1307<br>216 1307                                                                         | 17 270<br>17 249<br>23 587<br>150 501<br>325 752                         | 144<br>204<br>628<br>1779<br>2334                              | 0 0<br>0 0<br>0 1<br>0 12<br>0 157                                                                            | 1<br>0<br>1<br>19<br>104                                      | -33 2060<br>-35 2349<br>-13 2407<br>14 2492<br>1 2682                                                          | 1411 70<br>1389 96<br>1412 256<br>1408 659                                                                                                                                                                                                                                                       | 2935<br>3245<br>3730<br>5067<br>4637 | 1<br>0<br>1<br>19                 | 0 0<br>0 0                      | 0 5747<br>0 6275<br>0 6412<br>0 8794                                                      | 0<br>0<br>0                                                        | 0 205<br>0 205<br>0 207<br>0 200<br>0 200                                                  | 5 463<br>5 425<br>1 1028<br>0 876                                                         | 381<br>411<br>317<br>154                                     | 100<br>100<br>100<br>100                                                                                          | 0 320<br>0 236<br>0 151<br>0 380<br>0 140                                                 | 320<br>236<br>151<br>380<br>140      | 0<br>0<br>0                                                                                                                                                                  | 0 8<br>0 7<br>0 6<br>0 11<br>0 3                                        |
| December 6024<br>Average 4487                                                                                                                                                                                                                                                                                                                                                                                       | 128 1307<br>481 1296                                                                                                             | 416 1399<br>195 730                                                      | 2284<br>1551                                                   | 0 407                                                                                                         | 74<br>46                                                      | 10 2683<br>-8 2482                                                                                             | 1400 598                                                                                                                                                                                                                                                                                         | 3747<br>3997                         | 46                                |                                 | 0 7017                                                                                    | 0                                                                  | 0 200                                                                                      | 2 1282                                                                                    | 261                                                          | 100                                                                                                               | 0 53                                                                                      | 53<br>199                            | 0 Av                                                                                                                                                                         | 0 11<br>rerage price                                                    |
| Maximum 10955<br>Minimum 2170<br>TWh/year 39,41                                                                                                                                                                                                                                                                                                                                                                     | 3841 1307<br>0 1056<br>4,22 11,38                                                                                                | 836 2532<br>16 0<br>1,71 6,41                                            | 3150<br>21<br>13,62 (                                          | 0 3719<br>0 0<br>0,00 1,72                                                                                    | 0 -2                                                          | 613 3754<br>308 1312<br>0,07 21,80                                                                             | -246 6                                                                                                                                                                                                                                                                                           | 7659<br>0<br>35,11                   |                                   | 0 0<br>0 0                      | ) 29                                                                                      |                                                                    | 0 228<br>0 200<br>0 1,77                                                                   | 0 0                                                                                       |                                                              |                                                                                                                   | 0 0                                                                                       | 6418<br>0<br>1,75 (                  | 0 56                                                                                                                                                                         | DKK/MWh<br>2 369<br>0 649                                               |
| FUEL BALANCE (T<br>DHP                                                                                                                                                                                                                                                                                                                                                                                              | Wh/year):<br>CHP2 CH                                                                                                             | P3 Boiler2 B                                                             | oiler3 P                                                       | P Geo/N                                                                                                       | u. Hydro                                                      |                                                                                                                | CAES BioCon-S<br>Elc.ly. version F                                                                                                                                                                                                                                                               |                                      | ind Offs                          | h. PV                           | Wave                                                                                      | Solar.Th                                                           | h. Transp                                                                                  | p. househ                                                                                 | Industry<br>Various                                          | Total                                                                                                             |                                                                                           | Netto                                | Total                                                                                                                                                                        | ssion (Mt):<br>Netto                                                    |
| Coal -<br>Oil -<br>N.Gas -                                                                                                                                                                                                                                                                                                                                                                                          | 8,44 10,6                                                                                                                        | 1 -                                                                      | -                                                              | <br><br>.82 -                                                                                                 | -                                                             | -                                                                                                              | <br><br>22.85 -                                                                                                                                                                                                                                                                                  | -<br>0,01                            |                                   |                                 |                                                                                           | -                                                                  | -                                                                                          | -                                                                                         | -                                                            | 0,00<br>0,00<br>0,00                                                                                              | 0,00<br>0,00<br>-2,92                                                                     | 0,00<br>0,00<br>-2,91                | 0,00<br>0,00<br>0,00                                                                                                                                                         | 0,00<br>0,00<br>-0,60                                                   |
| Biomass 1,81<br>Renewable -                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  |                                                                          | ,05                                                            |                                                                                                               | -                                                             | 4,16<br>3,45                                                                                                   | - 38,87                                                                                                                                                                                                                                                                                          | -                                    | ,63 41,7                          | 5 6,4                           | 46 0,79                                                                                   | 6,39                                                               | -                                                                                          | 0,92                                                                                      | 19,03                                                        | 66,60<br>71,47                                                                                                    | 0,00                                                                                      | 66,60<br>71,47                       | 0,00                                                                                                                                                                         | 0,00                                                                    |
| H2 etc<br>Biofuel -                                                                                                                                                                                                                                                                                                                                                                                                 | 0,00 0,0                                                                                                                         | 0 0,00 0                                                                 | 0,00 0,<br>-                                                   | . 00                                                                                                          | -                                                             | 2                                                                                                              |                                                                                                                                                                                                                                                                                                  | 5,62<br>2,15                         |                                   |                                 |                                                                                           | -                                                                  | -<br>32,15                                                                                 | -                                                                                         | -                                                            | 0,00<br>0,00                                                                                                      | 0,00<br>0,00                                                                              | 0,00<br>0,00                         | 0,00<br>0,00                                                                                                                                                                 | 0,00<br>0,00                                                            |
| Nuclear/CCS -<br>Total 1,81                                                                                                                                                                                                                                                                                                                                                                                         | 8,44 10,6                                                                                                                        | -<br>1 0,77 1                                                            | -                                                              |                                                                                                               | -                                                             | - 7,61 -2                                                                                                      | 4,77 5,17 :                                                                                                                                                                                                                                                                                      | -<br>3,45 12                         | ,63 41,7                          | 5 6,4                           | 46 0,79                                                                                   | 6,39                                                               | -<br>32,15                                                                                 | 0,92                                                                                      | - 19,03 1                                                    | 0,00 38,07                                                                                                        | 0,00<br>-2,92 1                                                                           | 0,00<br>35,16                        | 0,00                                                                                                                                                                         | 0,00<br>-0,60                                                           |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                          | 0.5                                                            |                                                                                                               |                                                               | _                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                      | _                                 |                                 |                                                                                           |                                                                    |                                                                                            | _                                                                                         |                                                              |                                                                                                                   |                                                                                           |                                      | januar-201                                                                                                                                                                   | 15 [13:01]                                                              |
| Output spe                                                                                                                                                                                                                                                                                                                                                                                                          | ecificati                                                                                                                        | ons                                                                      | CE                                                             | ESA_2                                                                                                         | 2050_                                                         |                                                                                                                | _MI_201                                                                                                                                                                                                                                                                                          | _                                    | Comp                              | olete                           | .txt                                                                                      |                                                                    | Ih                                                                                         | ie En                                                                                     | ergyl                                                        | PLAN                                                                                                              | l mod                                                                                     | el 12                                | <u></u> (                                                                                                                                                                    | A                                                                       |
| Gr.<br>District<br>heating                                                                                                                                                                                                                                                                                                                                                                                          | .1<br>Solar CSHP                                                                                                                 | District<br>DHP heating                                                  |                                                                | CSHP CHP                                                                                                      | HP                                                            | Gr.2<br>ELT Bo                                                                                                 | Stor<br>iler EH age                                                                                                                                                                                                                                                                              | - Ba-<br>lance                       | District<br>heating               | Solar                           | CSHP CH                                                                                   | Gr.3<br>P HP                                                       | ELT                                                                                        | Boiler E                                                                                  | Stor-<br>EH age                                              | Ba-<br>lance                                                                                                      | RES1                                                                                      |                                      | cation<br>RES3 RE<br>Photo \ 4-7                                                                                                                                             |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                     | MW MW                                                                                                                            | MW MW                                                                    | MW                                                             | MW MW                                                                                                         |                                                               | MW M                                                                                                           | W MW MW                                                                                                                                                                                                                                                                                          |                                      | MW<br>4147                        | MW 40                           | MW MW                                                                                     |                                                                    | MW<br>0                                                                                    | MW M                                                                                      | 24 3117                                                      |                                                                                                                   | MW<br>1303                                                                                | MW 4348                              | MW N                                                                                                                                                                         | W MW                                                                    |
| February 515<br>March 448                                                                                                                                                                                                                                                                                                                                                                                           | 124 0<br>140 0                                                                                                                   | 391 2044<br>308 1793                                                     | 193<br>219                                                     | 146 412<br>146 462                                                                                            | 2 762                                                         |                                                                                                                | 41 51 1221                                                                                                                                                                                                                                                                                       | 9 12                                 | 4231<br>3680                      | 96                              | 1161 46<br>1161 52                                                                        | 7 1697                                                             | 0<br>0                                                                                     | 515<br>170                                                                                | 61 5730<br>30 4569                                           | 9 -1                                                                                                              | 1841<br>1509                                                                              | 5637<br>4962                         | 716                                                                                                                                                                          | 166 8139<br>119 7306                                                    |
| April 371<br>May 305                                                                                                                                                                                                                                                                                                                                                                                                | 201 0<br>241 0                                                                                                                   | 170 1506<br>63 1257                                                      | 359                                                            | 146 374<br>146 310                                                                                            | 422                                                           | ō                                                                                                              | 49 18 1133<br>1 1 1653                                                                                                                                                                                                                                                                           | 1 18                                 | 3051<br>2505                      | 157                             | 1161 46<br>1160 40                                                                        | 8 766                                                              | 0                                                                                          | 25<br>2                                                                                   | 6 5081<br>1 8299                                             | 9 9                                                                                                               | 1271                                                                                      | 4372                                 | 1093                                                                                                                                                                         | 58 6853<br>53 7327                                                      |
| June 172<br>July 172<br>August 172                                                                                                                                                                                                                                                                                                                                                                                  | 155 0<br>155 0<br>155 0                                                                                                          | 17 761<br>17 761<br>17 761                                               | 325<br>363<br>341                                              | 146 163<br>146 163<br>146 156                                                                                 | 8 85                                                          | 0<br>0                                                                                                         | 0 1 1502<br>0 1 1432<br>0 0 1603                                                                                                                                                                                                                                                                 | 7 2                                  | 1414<br>1414<br>1414              | 167                             | 1124 7<br>1118 10<br>1120 9                                                               | 7 59                                                               | 0                                                                                          | 0<br>0                                                                                    | 0 6123<br>0 6242<br>0 6242                                   | 2 -36                                                                                                             | 1356<br>918<br>1267                                                                       | 3345                                 | 1260<br>1436<br>654                                                                                                                                                          | 48 7446<br>48 5747<br>65 6275                                           |
| September 231<br>October 313                                                                                                                                                                                                                                                                                                                                                                                        | 208 0<br>163 0                                                                                                                   | 23 981<br>150 1290                                                       | 259<br>164                                                     | 146 291<br>146 254                                                                                            | 293<br>4 698                                                  | 0                                                                                                              | 1 1 1520<br>9 14 1492                                                                                                                                                                                                                                                                            | 0 -11                                | 1898<br>2576                      | 114                             | 1155 29<br>1161 24                                                                        | 6 335<br>7 1081                                                    | 0                                                                                          | 0<br>3                                                                                    | 0 6287                                                       | -2                                                                                                                | 1265                                                                                      | 4382                                 | 678<br>439                                                                                                                                                                   | 87 6412<br>128 8794                                                     |
| November 392<br>December 455                                                                                                                                                                                                                                                                                                                                                                                        | 66 0<br>39 0                                                                                                                     | 325 1584<br>416 1823                                                     |                                                                | 146 357<br>146 676                                                                                            | 777                                                           |                                                                                                                | 05 90 1568<br>79 51 1749                                                                                                                                                                                                                                                                         |                                      | 3221<br>3746                      | 45                              | 1161 39<br>1161 72                                                                        |                                                                    | 0                                                                                          | 52<br>228                                                                                 | 15 4931<br>22 2894                                           |                                                                                                                   | 1930<br>1332                                                                              |                                      |                                                                                                                                                                              | 128 8178<br>99 5913                                                     |
| Average 337<br>Maximum 836<br>Minimum 158                                                                                                                                                                                                                                                                                                                                                                           | 142 0<br>707 0<br>0 0                                                                                                            | 195 1379<br>836 3247<br>16 709                                           | 2175                                                           | 146 356<br>146 124<br>146 0                                                                                   | 1050                                                          | 0 13<br>0 13                                                                                                   |                                                                                                                                                                                                                                                                                                  |                                      | 2771<br>6872<br>1302              |                                 | 1150 37<br>1161 129<br>910                                                                |                                                                    | 0<br>0                                                                                     | 113<br>2597<br>0                                                                          | 13 5482<br>200 10000<br>0 0                                  |                                                                                                                   | 1437<br>4454<br>0                                                                         | 10173                                | 736<br>5000 :<br>0                                                                                                                                                           | 90 7017<br>300 18479<br>1 29                                            |
| Total for the whole ye                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                          |                                                                | 1,28 3,12                                                                                                     |                                                               |                                                                                                                |                                                                                                                                                                                                                                                                                                  | 0 -926                               | 24,34                             | 0,91                            |                                                                                           |                                                                    |                                                                                            | -                                                                                         | 0,12                                                         | -0,07                                                                                                             |                                                                                           | 41,75                                |                                                                                                                                                                              | ),79 61,63                                                              |
| Own use of heat from                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                          |                                                                |                                                                                                               |                                                               |                                                                                                                |                                                                                                                                                                                                                                                                                                  |                                      |                                   | -                               | NATU                                                                                      | RAL GAS E                                                          | EVCUAN                                                                                     | ICE                                                                                       | -                                                            |                                                                                                                   |                                                                                           |                                      | -                                                                                                                                                                            |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                     | xchange =                                                                                                                        | 14787                                                                    |                                                                |                                                                                                               | B                                                             | oilers CH                                                                                                      | IP2 PP<br>IP3 CAES                                                                                                                                                                                                                                                                               | Indi-<br>vidual                      | port                              | Indu.<br>Var.                   | Demand<br>Sum                                                                             | Bio-<br>gas                                                        | Syn-<br>gas                                                                                | CO2H<br>gas                                                                               | gas                                                          | SynHy<br>gas                                                                                                      | age                                                                                       | Sum                                  | lm-<br>port                                                                                                                                                                  | Ex-<br>port                                                             |
| Total Fuel ex Ngas e                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                |                                                                          |                                                                | Janu                                                                                                          |                                                               | /W M<br>0 39                                                                                                   |                                                                                                                                                                                                                                                                                                  | MW<br>0                              | MW                                | MW<br>0                         | MW<br>4601                                                                                | MW<br>895                                                          | MW<br>2254                                                                                 | MW<br>1545                                                                                | MW<br>1814                                                   | MW<br>-3660                                                                                                       | MW<br>1753                                                                                | MW<br>0                              | MW<br>0                                                                                                                                                                      | MW<br>0                                                                 |
| Total Fuel ex Ngas e<br>Uranium =<br>Coal =                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                |                                                                          |                                                                |                                                                                                               |                                                               | 0 26                                                                                                           |                                                                                                                                                                                                                                                                                                  | 0                                    | 0                                 | 0                               | 2947                                                                                      | 895<br>895                                                         | 1616<br>1891                                                                               | 2015                                                                                      | 1814                                                         | -3660<br>-3660                                                                                                    | 267<br>476                                                                                | 0                                    | 0                                                                                                                                                                            | 0                                                                       |
| Total Fuel ex Ngas e<br>Uranium =<br>Coal =<br>FuelOil =<br>Gasoil/Diesel=                                                                                                                                                                                                                                                                                                                                          | 0<br>0<br>0                                                                                                                      |                                                                          |                                                                | Febr<br>Marc                                                                                                  |                                                               | 0 29                                                                                                           | 51 361                                                                                                                                                                                                                                                                                           | 0                                    | 0                                 | 0                               |                                                                                           | 695                                                                | 1091                                                                                       | 1690                                                                                      | 1814                                                         | -3000                                                                                                             | 4/0                                                                                       | 0                                    | 0                                                                                                                                                                            |                                                                         |
| Total Fuel ex Ngas e<br>Uranium =<br>Coal =<br>FuelOil =<br>Gasoil/Diesel=<br>Petrol/JP =<br>Gas handling =                                                                                                                                                                                                                                                                                                         | 0<br>0<br>3380<br>646                                                                                                            |                                                                          |                                                                | Febr<br>Marc<br>April<br>May                                                                                  | <sup>sh</sup>                                                 | 0 29<br>0 25<br>0 21                                                                                           | 21 373<br>55 320                                                                                                                                                                                                                                                                                 | 0                                    | 0                                 | 0                               | 2894<br>2475                                                                              | 895<br>895                                                         | 1868<br>1790                                                                               | 1881<br>2045                                                                              | 1814<br>1814                                                 | -3660<br>-3660                                                                                                    | 96<br>-409                                                                                | 0                                    | 0                                                                                                                                                                            | 0                                                                       |
| Total Fuel ex Ngas e<br>Uranium =<br>Coal =<br>FuelOil =<br>Gasoil/Diesel=<br>Petrol/JP =<br>Gas handling =<br>Biomass =<br>Food income =                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>3380                                                                                                              |                                                                          |                                                                | Febr<br>Marc<br>April<br>May<br>June<br>June                                                                  | sh Î                                                          | 0 29<br>0 25<br>0 21<br>0 6<br>0 7                                                                             | 21 373<br>55 320<br>91 202<br>86 636                                                                                                                                                                                                                                                             | 0<br>0<br>0                          | 0<br>0<br>0                       | 0<br>0<br>0                     | 2894<br>2475<br>894<br>1421                                                               | 895<br>895<br>895<br>895                                           | 1868<br>1790<br>991<br>1497                                                                | 1881<br>2045<br>1935<br>1427                                                              | 1814<br>1814<br>1814<br>1814                                 | -3660<br>-3660<br>-3660<br>-3660                                                                                  | 96<br>-409<br>-1081<br>-551                                                               | 0<br>0<br>0                          | 0<br>0<br>0                                                                                                                                                                  | 0<br>0<br>0                                                             |
| Total Fuel ex Ngas el           Uranium         =           Coal         =           FuelOil         =           Gasoil/Diesel=         Petrol/JP           Petrol/JP         =           Biomass         =           Food income         =           Waste         =                                                                                                                                               | 0<br>0<br>3380<br>646<br>10761<br>0<br>0                                                                                         | 1                                                                        |                                                                | Febr<br>Marc<br>April<br>May<br>June<br>July<br>Augu<br>Sept                                                  | ust<br>ember                                                  | 0 29<br>0 25<br>0 21<br>0 6<br>0 7<br>0 7<br>0 7                                                               | 21 373<br>55 320<br>91 202<br>86 636<br>23 685<br>40 528                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0           | 2894<br>2475<br>894<br>1421<br>1407<br>2268                                               | 895<br>895<br>895<br>895<br>895<br>895                             | 1868<br>1790<br>991<br>1497<br>1441<br>1855                                                | 1881<br>2045<br>1935<br>1427<br>1531<br>1738                                              | 1814<br>1814<br>1814<br>1814<br>1814<br>1814                 | -3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660                                                                | 96<br>-409<br>-1081<br>-551<br>-613<br>-375                                               | 0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                                                                                                                                                        | 0<br>0<br>0<br>0<br>0                                                   |
| Total Fuel ex Ngas e<br>Jranium =<br>Coal =<br>FuelOil =<br>Gasoli/Diesel=<br>Petrol/JP =<br>Gas handling =<br>Biomass =<br>Food income =<br>Naste =<br>Total Ngas Exchange<br>Marginal operation co                                                                                                                                                                                                                | 0<br>0<br>3380<br>646<br>10761<br>0<br>0<br>e costs =<br>osts =                                                                  | 275                                                                      |                                                                | Febr<br>Marc<br>April<br>May<br>June<br>July<br>Augu<br>Sept<br>Octo<br>Nove                                  | ust<br>ember<br>iber<br>ember                                 | 0 29<br>0 25<br>0 21<br>0 6<br>0 7<br>0 7<br>0 7<br>0 17<br>0 14<br>0 22                                       | 21         373           55         320           91         202           86         636           23         685           40         528           83         257           40         247                                                                                                    |                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0   | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 2894<br>2475<br>894<br>1421<br>1407<br>2268<br>1740<br>2487                               | 895<br>895<br>895<br>895<br>895<br>895<br>895<br>895               | 1868<br>1790<br>991<br>1497<br>1441<br>1855<br>1266<br>1542                                | 1881<br>2045<br>1935<br>1427<br>1531<br>1738<br>2325<br>2110                              | 1814<br>1814<br>1814<br>1814<br>1814<br>1814<br>1814<br>1814 | -3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660                                              | 96<br>-409<br>-1081<br>-551<br>-613<br>-375<br>-900<br>-214                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                         | 0<br>0<br>0<br>0<br>0<br>0                                              |
| Gasoil/Diesel=<br>Petrol/JP =<br>Gas handling =<br>Biomass =<br>Food income =<br>Waste =<br>Total Ngas Exchange<br>Marginal operation or<br>Total Electricity exch<br>Import =                                                                                                                                                                                                                                      | 0<br>0<br>3380<br>646<br>10761<br>0<br>0<br>e costs =<br>osts =<br>osts =<br>0                                                   |                                                                          |                                                                | Febr<br>Marc<br>April<br>May<br>Juny<br>July<br>Augu<br>Sept<br>Octo<br>Nove<br>Dece<br>Aver                  | ch<br>ember<br>iber<br>ember<br>ember<br>age                  | 0 29<br>0 25<br>0 21:<br>0 6<br>0 7<br>0 7<br>0 17<br>0 14<br>0 22<br>0 41:<br>0 21:                           | 21         373           55         320           91         202           86         636           23         685           40         528           83         257           40         247           60         602           69         435                                                  |                                      |                                   |                                 | 2894<br>2475<br>894<br>1421<br>1407<br>2268<br>1740<br>2487<br>4762<br>2604               | 895<br>895<br>895<br>895<br>895<br>895<br>895<br>895<br>895        | 1868<br>1790<br>991<br>1497<br>1441<br>1855<br>1266<br>1542<br>2447<br>1707                | 1881<br>2045<br>1935<br>1427<br>1531<br>1738<br>2325<br>2110<br>1749<br>1848              | 1814<br>1814<br>1814<br>1814<br>1814<br>1814<br>1814<br>1814 | -3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660                                     | 96<br>-409<br>-1081<br>-551<br>-613<br>-375<br>-900<br>-214<br>1517<br>0                  |                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               |
| Total Fuel ex Ngas ei           Uranium         =           Coal         =           FuelOil         =           Gasoll/Diesel=         Petrol/JP           Patrol/JP         =           Biomass         =           Food income         =           Waste         =           Total Ngas Exchange           Marginal operation or           Total Electricity exch                                                | 0<br>0<br>3380<br>646<br>10761<br>0<br>0<br>e costs =<br>osts =<br>iange =                                                       | 275                                                                      |                                                                | Febr<br>Marc<br>April<br>May<br>Juny<br>July<br>Augu<br>Sept<br>Octo<br>Nove<br>Dece<br>Aver                  | ust<br>ember<br>ber<br>ember<br>ember<br>ember<br>age<br>imum | 0 29<br>0 25<br>0 21:<br>0 6<br>0 7<br>0 7<br>0 7<br>0 17<br>0 14<br>0 22:<br>0 41:                            | 21         373           55         320           91         202           86         636           23         685           40         528           83         257           40         247           60         602           69         435                                                  |                                      |                                   |                                 | 2894<br>2475<br>894<br>1421<br>1407<br>2268<br>1740<br>2487<br>4762                       | 895<br>895<br>895<br>895<br>895<br>895<br>895<br>895<br>895        | 1868<br>1790<br>991<br>1497<br>1441<br>1855<br>1266<br>1542<br>2447                        | 1881<br>2045<br>1935<br>1427<br>1531<br>1738<br>2325<br>2110<br>1749                      | 1814<br>1814<br>1814<br>1814<br>1814<br>1814<br>1814<br>1814 | -3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660                                     | 96<br>-409<br>-1081<br>-551<br>-613<br>-375<br>-900<br>-214<br>1517                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                    |                                                                         |
| Total Fuel ex Ngas e<br>Uranium =<br>FuelOI =<br>Gasl/Diesel=<br>Patrol/DP =<br>Gas handling =<br>Biomass =<br>Food income =<br>Waste =<br>Total Ngas Exchange<br>Marginal operation cr<br>Total Electricity exch<br>Import =<br>Export =<br>Bottleneck =                                                                                                                                                           | 0<br>0<br>3380<br>646<br>10761<br>0<br>0<br>e costs =<br>osts =<br>iange =<br>0<br>-645<br>645<br>0                              | 275                                                                      |                                                                | Febr<br>Marc<br>April<br>May<br>June<br>July<br>Augu<br>Sept<br>Octo<br>Nove<br>Deco<br>Aver<br>Maxi<br>Minin | sh<br>ember<br>ber<br>ember<br>ember<br>agge<br>mum<br>mum    | 0 29<br>0 25<br>0 21:<br>0 6<br>0 7<br>0 17<br>0 14<br>0 22<br>0 41:<br>0 21:<br>0 75<br>0                     | 21         373           55         320           91         202           886         636           23         685           40         528           83         257           40         247           50         602           69         435           20         5479           0         0 |                                      |                                   |                                 | 2894<br>2475<br>894<br>1421<br>1407<br>2268<br>1740<br>2487<br>4762<br>2604<br>11042      | 895<br>895<br>895<br>895<br>895<br>895<br>895<br>895<br>895<br>895 | 1868<br>1790<br>991<br>1497<br>1441<br>1855<br>1266<br>1542<br>2447<br>1707<br>3522        | 1881<br>2045<br>1935<br>1427<br>1531<br>1738<br>2325<br>2110<br>1749<br>1848<br>3703      | 1814<br>1814<br>1814<br>1814<br>1814<br>1814<br>1814<br>1814 | -3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660                            | 96<br>-409<br>-1081<br>-551<br>-613<br>-375<br>-900<br>-214<br>1517<br>0<br>8471          |                                      |                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |
| Total Fuel ex Ngas e<br>Uranium =<br>Coal =<br>FuelOil =<br>Gasol/Diesel=<br>PetrollyP =<br>Gas handling =<br>Biomass =<br>Food income =<br>Waste =<br>Total Ngas Exchange<br>Marginal operation or<br>Total Electricity exch<br>import =<br>Export =<br>Soltteneck =<br>Fixed imp/ex=                                                                                                                              | 0<br>0<br>3380<br>646<br>10761<br>0<br>0<br>e costs =<br>0<br>645<br>645<br>0<br>0<br>costs =<br>=                               | 275<br>0                                                                 |                                                                | Febr<br>Marc<br>April<br>May<br>June<br>July<br>Augu<br>Sept<br>Octo<br>Nove<br>Deco<br>Aver<br>Maxi<br>Minin | sh<br>ember<br>ber<br>ember<br>ember<br>agge<br>mum<br>mum    | 0 29<br>0 25<br>0 21:<br>0 6<br>0 7<br>7<br>0 7<br>0 7<br>0 17<br>0 14<br>0 22:<br>0 41:<br>0 21:<br>0 75<br>0 | 21         373           55         320           91         202           886         636           23         685           40         528           83         257           40         247           50         602           69         435           20         5479           0         0 |                                      |                                   |                                 | 2894<br>2475<br>894<br>1421<br>1407<br>2268<br>1740<br>2487<br>4762<br>2604<br>11042<br>0 | 895<br>895<br>895<br>895<br>895<br>895<br>895<br>895<br>895<br>895 | 1868<br>1790<br>991<br>1497<br>1441<br>1855<br>1266<br>1542<br>2447<br>1707<br>3522<br>120 | 1881<br>2045<br>1935<br>1427<br>1531<br>1738<br>2325<br>2110<br>1749<br>1848<br>3703<br>0 | 1814<br>1814<br>1814<br>1814<br>1814<br>1814<br>1814<br>1814 | -3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660 | 96<br>-409<br>-1081<br>-551<br>-613<br>-375<br>-900<br>-214<br>1517<br>0<br>8471<br>-2872 |                                      |                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| Total Fuel ex Ngas e<br>Uranium –<br>Coal –<br>Gaal –<br>Sasoli/Diesel=<br>Petrol/D/ =<br>Sas handling =<br>Biomass =<br>Food income =<br>Waste =<br>Total Ngas Exchang;<br>Marginal operation c:<br>Total Electrical and operation c:<br>Total Electrical and operation c:<br>Total Electrical and operation c:<br>Total Electrical and operation c:<br>Fixed implexe<br>Export =<br>Externet c:<br>Fixed implexe. | 0<br>0<br>3380<br>646<br>10761<br>0<br>e costs =<br>e costs =<br>ange =<br>0<br>645<br>645<br>0<br>costs =<br>=<br>5 =<br>osts = | 275<br>0<br>0<br>15063                                                   |                                                                | Febr<br>Marc<br>April<br>May<br>June<br>July<br>Augu<br>Sept<br>Octo<br>Nove<br>Deco<br>Aver<br>Maxi<br>Minin | sh<br>ember<br>ber<br>ember<br>ember<br>agge<br>mum<br>mum    | 0 29<br>0 25<br>0 21:<br>0 6<br>0 7<br>7<br>0 7<br>0 7<br>0 17<br>0 14<br>0 22:<br>0 41:<br>0 21:<br>0 75<br>0 | 21         373           55         320           91         202           886         636           23         685           40         528           83         257           40         247           50         602           69         435           20         5479           0         0 |                                      |                                   |                                 | 2894<br>2475<br>894<br>1421<br>1407<br>2268<br>1740<br>2487<br>4762<br>2604<br>11042<br>0 | 895<br>895<br>895<br>895<br>895<br>895<br>895<br>895<br>895<br>895 | 1868<br>1790<br>991<br>1497<br>1441<br>1855<br>1266<br>1542<br>2447<br>1707<br>3522<br>120 | 1881<br>2045<br>1935<br>1427<br>1531<br>1738<br>2325<br>2110<br>1749<br>1848<br>3703<br>0 | 1814<br>1814<br>1814<br>1814<br>1814<br>1814<br>1814<br>1814 | -3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660<br>-3660 | 96<br>-409<br>-1081<br>-551<br>-613<br>-375<br>-900<br>-214<br>1517<br>0<br>8471<br>-2872 |                                      |                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

Figure 24: Two A4 pages with a summary of the main results which can be printed using EnergyPLAN.

In this section, some of the main results from these output sheets are described.

# 4.9.1 Page 1: To be completed

# 4.9.2 Page 2: To be completed

The left top half of pages 2 summarises the district heating production and demands. These are described for the following:

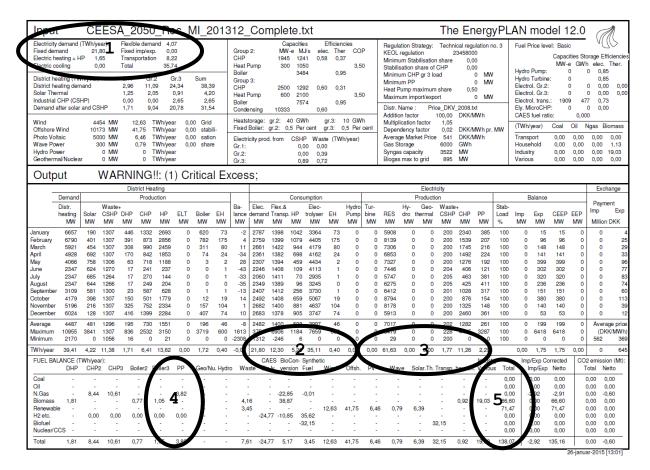
- The average production/demand for each month
- The average, maximum, and minimum hourly demand/production over the year being simulated
- The total demand/production over the year

| Outp                                                                                                      | ut sp                                                                                          | becif                                                                   | icat                                      | ions                                                                 | ;                                                                         | CE                                                                       | ES/                                                                | <u>م_</u> 20                                                              | 050                                                                       | _Re                                            | c_N                                                               | ll.tx    | t                                                                                               |                                                            |                                                                                      |                                                                       |                                                                              |                                                                          |                                                                                | Tł                                                      | ne E                                                             | ner                                  | gyP                                                                            | LAN                                                       |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                                                                                           |                                                                                                |                                                                         |                                           |                                                                      |                                                                           |                                                                          |                                                                    |                                                                           |                                                                           |                                                | Dist                                                              | rict Hea | ating Pro                                                                                       | oduction                                                   |                                                                                      |                                                                       |                                                                              |                                                                          |                                                                                |                                                         |                                                                  |                                      |                                                                                |                                                           |
|                                                                                                           | G                                                                                              | Gr.1                                                                    |                                           |                                                                      |                                                                           |                                                                          |                                                                    |                                                                           |                                                                           | Gr.2                                           |                                                                   |          |                                                                                                 |                                                            |                                                                                      |                                                                       |                                                                              |                                                                          | Gr.3                                                                           |                                                         |                                                                  |                                      |                                                                                |                                                           |
|                                                                                                           | District<br>heating<br>MW                                                                      | Solar<br>MW                                                             | CSHP<br>MW                                | DHP<br>MW                                                            | District<br>heating<br>MW                                                 | Solar<br>MW                                                              | CSHP<br>MW                                                         | CHP<br>MW                                                                 | HP<br>MW                                                                  | ELT<br>MW                                      | Boiler<br>MW                                                      | EH<br>MW | Stor-<br>age<br>MW                                                                              | Ba-<br>lance<br>MW                                         | District<br>heating<br>MW                                                            | Solar<br>MW                                                           | CSHP<br>MW                                                                   | CHP<br>MW                                                                | HP<br>MW                                                                       | ELT<br>MW                                               | Boiler<br>MW                                                     | EH<br>MW                             | Stor-<br>age<br>MW                                                             | Ba-<br>lance<br>MW                                        |
| January<br>February<br>March<br>April<br>May<br>June<br>July<br>August<br>Septembe<br>October<br>November | 504<br>515<br>448<br>371<br>305<br>172<br>172<br>172<br>172<br>172<br>172<br>172<br>313<br>313 | 59<br>124<br>140<br>201<br>241<br>155<br>155<br>155<br>208<br>163<br>66 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 446<br>391<br>308<br>170<br>63<br>17<br>17<br>17<br>23<br>150<br>325 | 2006<br>2044<br>1793<br>1506<br>1257<br>761<br>761<br>981<br>1290<br>1584 | 92<br>193<br>219<br>341<br>359<br>325<br>361<br>340<br>259<br>164<br>104 | 128<br>128<br>128<br>128<br>128<br>128<br>128<br>128<br>128<br>128 | 838<br>532<br>579<br>446<br>319<br>160<br>161<br>156<br>304<br>308<br>450 | 518<br>594<br>506<br>451<br>405<br>156<br>101<br>142<br>288<br>527<br>545 | 4<br>7<br>5<br>3<br>4<br>3<br>3<br>4<br>8<br>8 | 426<br>591<br>346<br>156<br>10<br>5<br>3<br>4<br>10<br>138<br>352 |          | 27435<br>25880<br>24602<br>21267<br>27227<br>24163<br>23892<br>25467<br>24204<br>23050<br>24369 | -1<br>-2<br>9<br>-20<br>-16<br>3<br>-12<br>-13<br>16<br>-4 | 4147<br>4231<br>3680<br>3051<br>2505<br>1414<br>1414<br>1414<br>1898<br>2576<br>3221 | 44<br>93<br>105<br>164<br>173<br>157<br>181<br>161<br>125<br>78<br>50 | 1110<br>1110<br>1110<br>1109<br>1073<br>1066<br>1069<br>1102<br>1110<br>1110 | 693<br>454<br>532<br>490<br>428<br>95<br>130<br>113<br>325<br>279<br>414 | 1380<br>1386<br>1315<br>1045<br>757<br>128<br>75<br>100<br>345<br>1021<br>1227 | 8<br>15<br>11<br>9<br>7<br>2<br>1<br>1<br>2<br>12<br>15 | 912<br>1173<br>607<br>246<br>18<br>0<br>0<br>0<br>0<br>69<br>405 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 2<br>18<br>165<br>2188<br>4759<br>7372<br>7597<br>7597<br>7586<br>6932<br>1203 | 0<br>0<br>-13<br>-13<br>-40<br>-39<br>-30<br>-3<br>7<br>0 |
| December                                                                                                  | 455                                                                                            | 39                                                                      | Ő                                         | 416                                                                  | 1823                                                                      | 62                                                                       | 128                                                                | 865                                                                       | 455                                                                       | 4                                              | 307                                                               |          | 21717                                                                                           | 2                                                          | 3746                                                                                 | 30                                                                    | 1110                                                                         | 732                                                                      | 1255                                                                           | 8                                                       | 610                                                              | 0                                    | 2099                                                                           | 1                                                         |
| Average<br>Maximum<br>Minimum                                                                             | 337<br>836<br>158                                                                              | 142<br>707<br>0                                                         | 0<br>0<br>0                               | 195<br>836<br>16                                                     | 1379<br>3247<br>709                                                       | 235<br>2154<br>0                                                         | 128<br>128<br>128                                                  | 427<br>1605<br>0                                                          | 390<br>700<br>34                                                          | 5<br>19<br>0                                   | 194<br>1851<br>0                                                  |          | 24442<br>40000<br>0                                                                             | 0<br>1144<br>-1316                                         | 2771<br>6872<br>1302                                                                 | 113<br>1401<br>0                                                      | 1099<br>1110<br>859                                                          | 391<br>1207<br>0                                                         | 835<br>1400<br>28                                                              | 7<br>34<br>0                                            | 334<br>3339<br>0                                                 | 0<br>2<br>0                          | 3975<br>10000<br>0                                                             | -9<br>1003<br>-1113                                       |
| Total for th<br>TWh/year                                                                                  | e whole<br>2.96                                                                                | year<br>1.25                                                            | 0.00                                      | 1.71                                                                 | 12.11                                                                     | 2.06                                                                     | 1.13                                                               | 3.75                                                                      | 3.42                                                                      | 0.04                                           | 1.71                                                              | 0.00     |                                                                                                 | 0.00                                                       | 24.34                                                                                | 1.00                                                                  | 9.65                                                                         | 3.43                                                                     | 7.33                                                                           | 0.06                                                    | 2.93                                                             | 0.00                                 |                                                                                | -0.08                                                     |

There are two rows of abbreviations on top. The first signifies the type of district heating:

- Gr.1 = Group 1 district heating
- Gr.2 = Group 2 district heating
- Gr.3 = Group 3 district heating

These different groups are described in section 4.2. The next row signifies the type of production or demand with each of the groups:


- District Heating = the district heating demand in that specific group.
- Solar = District heating supplied to the grid by solar district heating systems.
- CSHP = District heating supplied to the grid by waste incineration and industry.
- DHP = District heating supplied to the grid by boilers. This is only applicable to group 1 so in these systems the boilers are the primary conventional source of district heating.
- Boiler = District heating supplied to the grid by boilers. This is applicable to group 2 and group 3, so in these systems the boilers are mostly required for peak heat demands or as backup to CHP plants.
- CHP = District heating supplied to the grid by combined heat and power plants.
- HP = District heating supplied to the grid by solar heat pumps.
- ELT = District heating supplied to the grid by the surplus heat from electrolysers.
- EH = District heating supplied to the grid by electric boilers.
- Storage = This is the amount of energy in the thermal storage system for district heating
- Balance = This outlines if there is a shortfall (+) or excess (-) of heat being produced in the district heating system. If there is a significant imbalance, then this needs to be rectified by adding or removing units from the district heating system **OR** by increasing or decreasing the demand.

# 5 Verifying Reference Model Data

Once all the data has been inputted into EnergyPLAN, the final step is to verify that the model created is operating the same as the energy system that you are trying to simulate.

The first step is to ensure that all the capacities and distributions are correct, including interconnection capacity that is placed under the Regulation tab. Afterwards, the energy outputs from the model must be compared with those of the actual energy system. There are five guidelines listed below that may be useful for completing this task (see Figure 25 also):

- 1. Ensure the electricity demand is correct (including demand, heating, cooling, and interconnection).
- 2. Confirm the consumption is also correct at point 2.
- 3. Check that the production units, other than the power plants, are producing the required amount of energy.
- 4. Are the power plants generating the correct amount of energy for each fuel type? If steps 3 and 4 are correct, but the power plants are not generating the correct amount of energy, then the power plant efficiency under the Input -> DistrictHeating tab needs to be adjusted.



5. Is the total amount of fuel being used within the energy system correct?

Figure 25: Verifying the EnergyPLAN model is functioning accurately.

# FINDING AND INPUTTING DATA INTO ENERGYPLAN

| January 2 | 26, 2015 |
|-----------|----------|
|-----------|----------|

| Input                                                                                  |                                                     | CE                            | ES                     | A_2                                     | 050                                           | )_Re                                     | ec_N                           | /I_2               | 013       | 12_                                              | Cor                   | nple                                     | te.t                      | xt                           |                     |                          |      |                                            |                                              |                                      | Th                   | e Er                     | nergy                    | /PL/               | AN mo                                                          | del                           | 12.0                              | Â                        | N                             |
|----------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|------------------------|-----------------------------------------|-----------------------------------------------|------------------------------------------|--------------------------------|--------------------|-----------|--------------------------------------------------|-----------------------|------------------------------------------|---------------------------|------------------------------|---------------------|--------------------------|------|--------------------------------------------|----------------------------------------------|--------------------------------------|----------------------|--------------------------|--------------------------|--------------------|----------------------------------------------------------------|-------------------------------|-----------------------------------|--------------------------|-------------------------------|
| Electricity<br>Fixed dem<br>Electric he<br>Electric co<br>District her<br>District her | and<br>ating + H<br>oling<br>ating (TW<br>ating dem | 21,<br>P 1,<br>0,<br>/h/year) | 80<br>65<br>00         | Fixed<br>Trans<br>Total<br>Gr.1<br>2,96 | le dema<br>imp/exp<br>portatio<br>Gr.<br>11,1 | p. 0,0<br>on 8,2<br>35,7<br>.2 0<br>09 2 | 00<br>22<br>74<br>Gr.3<br>4,34 | Sum<br>38,3        |           | Group<br>CHP<br>Heat F<br>Boiler<br>Group<br>CHP | 'ump                  |                                          | 0 105<br>348              | I/s el<br>11 0,9<br>10<br>14 | 0,9                 | er CO<br>37<br>3,5<br>95 |      | KEOL<br>Minim<br>Stabili<br>Minim<br>Minim | regula<br>um Sta<br>sation<br>um CH<br>um PP | bilisation<br>share of<br>IP gr 3 lo | n share<br>CHP<br>ad | 2345800<br>0,0<br>0,0    | 00<br>00<br>0 MW<br>0 MW | 5.3                | Fuel Price le<br>Hydro Pump<br>Hydro Turbi<br>Electrol. Gr.    | Capa<br>MW<br>o:<br>ne:<br>2: | cities St<br>-e GW<br>0<br>0<br>0 | 0 0,85<br>0,85<br>0 0,00 | Ther.<br>0,00                 |
| Solar Ther<br>Industrial (<br>Demand a                                                 | CHP (CSI                                            |                               | SHP                    | 1,25<br>0,00<br>1,71                    | 2,<br>0,<br>9,                                | 00                                       | 0,91<br>2,65<br>0,78           | 4,2<br>2,6<br>31,5 | 5         | Heat F<br>Boiler<br>Conde                        | nsing                 | 600<br>10333                             | 757                       | '4<br>0,0                    |                     |                          |      | Maxim<br>Distr.                            |                                              | port/exp<br>: Pri                    | ort                  |                          | 0 MW                     | -                  | Electrol. Gr.<br>Electrol. tran<br>Ely. MicroCl<br>CAES fuel r | ns.: 19<br>HP:                | 09 47                             | 0 0,00                   | 1                             |
| Wind<br>Offshore V                                                                     | Vind                                                |                               | 54 MW<br>73 MW         |                                         |                                               | TWh/yea<br>TWh/yea                       |                                |                    |           |                                                  | orage:<br>Boiler:     |                                          | 40 GW<br>.5 Per           |                              |                     | 10 GW<br>0,5 Per         |      |                                            | lication<br>Idency                           |                                      | 1,05                 | DVVA                     | Whpr. I                  |                    | (TWh/year)                                                     | Coal                          | Oil                               | Ngas Bio                 | omass                         |
| Photo Volt<br>Wave Pow<br>Hydro Pow<br>Geotherma                                       | aic<br>/er<br>/er                                   | 50<br>3                       | 00 MW<br>00 MW<br>0 MW |                                         | 6,46<br>0,79<br>0                             | TWh/yea<br>TWh/yea<br>TWh/yea<br>TWh/yea | ar 0,0<br>ar 0,0               | 0 satio            | n [       |                                                  |                       | d. from                                  | CSHF<br>0,0<br>0,0<br>0,8 | PWa<br>000,0                 | ste (TW<br>00<br>39 | -                        |      | Avera<br>Gas S<br>Synga                    |                                              | ket Price<br>.city                   |                      | DKK/M<br>GWh<br>MW<br>MW |                          |                    | Transport<br>Household<br>Industry<br>Various                  | 0,00<br>0,00<br>0,00<br>0,00  | 0,00                              |                          | 0,00<br>1,13<br>19,03<br>0,00 |
| Outp                                                                                   | ut                                                  |                               | WAI                    | RNI                                     | NG                                            | !!: (1                                   | ) Cr                           | itica              | I Ex      | ces                                              | s;                    |                                          |                           |                              |                     |                          |      |                                            |                                              |                                      |                      |                          |                          |                    |                                                                |                               |                                   |                          |                               |
|                                                                                        |                                                     |                               |                        | Dis                                     | trict He                                      | ating                                    |                                |                    |           |                                                  |                       |                                          |                           |                              |                     |                          |      |                                            |                                              | Electr                               | icity                |                          |                          |                    |                                                                |                               |                                   | Exch                     | ange                          |
|                                                                                        | Demand                                              |                               |                        |                                         | Produ                                         | uction                                   |                                |                    |           |                                                  |                       |                                          | Consu                     | umption                      |                     |                          |      |                                            |                                              | Producti                             | on                   |                          |                          |                    | Balanc                                                         | е                             |                                   | Payme                    | t a                           |
|                                                                                        | Distr.<br>heating<br>MW                             | Solar<br>MW                   | Waste<br>CSHP<br>MW    |                                         | CHP<br>MW                                     | HP<br>MW                                 | ELT<br>MW                      | Boiler<br>MW       | EH<br>MW  | Ba-<br>lance<br>MW                               | Elec.<br>demand<br>MW | Flex.&<br>I Transp<br>MW                 | . HP<br>MW                | Elec-<br>trolyser<br>MW      | r EH<br>MW          | Hydro<br>Pump<br>MW      |      | RES<br>MW                                  | Hy-<br>dro<br>MW                             | Geo-<br>thermal<br>MW                | Waste<br>CSHF<br>MW  |                          |                          | Stab-<br>Load<br>% | Imp Exp<br>MW MW                                               |                               | P EEP<br>MW                       | Imp<br>Million           | Exp                           |
| January                                                                                | 6657                                                | 190                           | 1307                   | 446                                     | 1332                                          |                                          | 0                              | 620                | 73        | -2                                               | 2787                  | 1398                                     | 1042                      | 3364                         | 73                  | 0                        | 0    | 5908                                       | 0                                            | · ·                                  | 200                  | 2340                     | 385                      | 100                | 0 1                                                            |                               |                                   | 0                        | 4                             |
| February<br>March                                                                      | 6790<br>5921                                        | 401<br>454                    | 1307<br>1307           | 391<br>308                              | 873<br>990                                    |                                          | 0                              | 782<br>311         | 175<br>80 | 4                                                | 2759<br>2661          | 1399<br>1422                             | 1079<br>944               | 4405<br>4179                 | 175<br>80           | 0                        | 0    | 8139<br>7306                               | 0                                            | · · ·                                | 200<br>200           | 1539<br>1745             | 207<br>216               | 100<br>100         | 0 9                                                            |                               |                                   | 0                        | 25<br>29                      |
| April                                                                                  | 4928                                                | 692                           | 1307                   | 170                                     | 842                                           |                                          | ŏ                              | 74                 | 24        | -34                                              | 2361                  | 1382                                     | 698                       | 4162                         | 24                  | ŏ                        | ŏ    | 6853                                       | ő                                            |                                      | 200                  | 1492                     | 224                      | 100                | 0 14                                                           |                               | ő                                 | ŏ                        | 33                            |
| May                                                                                    | 4066                                                | 758                           | 1306                   | 63                                      | 718                                           |                                          | 0                              | 3                  | 2         | 28                                               | 2307                  | 1394                                     | 459                       | 4434                         | 2                   | 0                        | 0    | 7327                                       | 0                                            |                                      | 200                  | 1276                     | 192                      | 100                | 0 39                                                           |                               | 0                                 | 0                        | 96                            |
| June<br>Julv                                                                           | 2347<br>2347                                        | 624<br>685                    | 1270<br>1264           | 17<br>17                                | 241<br>270                                    | 237<br>144                               | 0                              | 0                  | 1         | -43<br>-33                                       | 2246<br>2060          | 1408<br>1411                             | 109<br>70                 | 4113<br>2935                 | 1                   | 0                        | 0    | 7446<br>5747                               | 0                                            | -                                    | 204<br>205           | 406<br>463               | 121<br>381               | 100<br>100         | 0 30                                                           |                               | 0                                 | 0                        | 77<br>83                      |
| August                                                                                 | 2347                                                | 644                           | 1266                   | 17                                      | 249                                           |                                          | 0                              | ő                  | ó         | -35                                              | 2349                  | 1389                                     | 96                        | 3245                         | 0                   | 0                        | 0    | 6275                                       | 0                                            | -                                    | 205                  | 403                      | 411                      | 100                | 0 23                                                           |                               | 0                                 | ŏ                        | 74                            |
| September                                                                              | 3109                                                | 581                           | 1300                   | 23                                      | 587                                           | 628                                      | 0                              | 1                  | 1         | -13                                              | 2407                  | 1412                                     | 256                       | 3730                         | 1                   | 0                        | 0    | 6412                                       | 0                                            |                                      | 201                  | 1028                     | 317                      | 100                | 0 15                                                           |                               | Ō                                 | 0                        | 60                            |
| October                                                                                | 4179                                                | 398                           | 1307                   | 150                                     | 501                                           | 1779                                     | 0                              | 12                 | 19        | 14                                               | 2492                  | 1408                                     | 659                       | 5067                         | 19                  | 0                        | 0    | 8794                                       | 0                                            |                                      | 200                  | 876                      | 154                      | 100                | 0 38                                                           |                               | 0                                 | 0                        | 113                           |
| November                                                                               | 5196                                                | 216                           | 1307                   | 325                                     | 752                                           |                                          | 0                              | 157                | 104       | 1                                                | 2682                  | 1400                                     | 881                       | 4637                         | 104                 | 0                        | 0    | 8178                                       | 0                                            |                                      | 200                  | 1325                     | 148                      | 100                | 0 14                                                           |                               |                                   | 0                        | 39                            |
| December                                                                               | 6024                                                | 128                           | 1307                   | 416                                     | 1399                                          |                                          | 0                              | 407                | 74        | 10                                               | 2683                  | 1378                                     | 905                       | 3747                         | 74                  | 0                        | 0    | 5913                                       | 0                                            |                                      | 200                  | 2460                     | 361                      | 100                | 0 5                                                            |                               |                                   | -                        | 12                            |
| Average                                                                                | 4487                                                | 481                           | 1296                   | 195                                     | 730                                           |                                          | 0                              | 196                | 46        | -8                                               | 2482                  | 1400                                     | 598                       | 3997                         | 46                  | 0                        | 0    | 7017                                       | 0                                            | -                                    | 202                  | 1282                     | 261                      | 100                | 0 19                                                           |                               |                                   |                          | ge price                      |
| Maximum<br>Minimum                                                                     | 10955<br>2170                                       | 3841<br>0                     | 1307<br>1056           | 836<br>16                               | 2532<br>0                                     | 3150<br>21                               | 0                              | 3719<br>0          | 600<br>0  | 1613<br>-2308                                    | 3754<br>1312          | 6906<br>-246                             | 1184<br>6                 | 7659<br>0                    | 600<br>0            | 0                        | 0    | 18479<br>29                                | 0                                            |                                      | 228<br>200           | 4445<br>0                | 3287<br>0                | 100<br>100         | 0 641                                                          |                               | 0                                 | 562                      | K/MWh)<br>369                 |
| TWh/year                                                                               | 39,41                                               | 4,22                          | 11,38                  | 1,71                                    | 6,41                                          | 13,62                                    | 0,00                           | 1,72               | 0,40      | -0,07                                            | 21,80                 | 12,30                                    | 5,26                      | 35,11                        | 0,40                | 0,00                     | 0,00 | 61,63                                      | 0,00                                         | 0,00                                 | 1,77                 | 11,26                    | 2,29                     |                    | 0,00 1,7                                                       | 5 1,75                        | 0,00                              | 0                        | 645                           |
| FUEL BAL                                                                               | ANCE (T                                             | Wh/yea                        | ar):                   |                                         |                                               | -                                        | -                              | -                  | -         | -                                                | CA                    | ES Bio                                   | Con- S                    | yntheti                      | c .                 | -                        |      |                                            | -                                            |                                      |                      | -                        | Industry                 | y                  | Imp/Exp                                                        | Corrected                     | d CO                              | l<br>2 emissio           | n (Mt):                       |
|                                                                                        | DHP                                                 | CHP                           | 2 CHP                  | P3 Bo                                   | oiler2                                        | Boiler3                                  | PP                             | Geo/N              | u. Hydro  | o Wa                                             | ste Elo               | oly. ver                                 | sion F                    | uel                          | Wind                | Offsh.                   | PV   | Wa                                         | ve S                                         | olar.Th.                             | Transp.              | househ                   | . Various                | Tota               | I Imp/Ex                                                       | p Netto                       | 1                                 | otal Ne                  | etto                          |
| Coal                                                                                   | -                                                   | -                             | -                      |                                         | -                                             | -                                        | -                              | -                  | -         | -                                                |                       | -                                        | -                         | -                            | -                   | -                        | -    |                                            |                                              | -                                    | -                    | -                        | -                        | 0,00               |                                                                | 0,00                          |                                   |                          | 00                            |
| Oil                                                                                    | -                                                   |                               |                        |                                         | -                                             | -                                        |                                | -                  | -         | -                                                |                       | -                                        |                           | -                            | -                   | -                        | -    |                                            |                                              | -                                    | -                    | -                        | -                        | 0,00               |                                                                | 0,00                          |                                   |                          | 00                            |
| N.Gas<br>Biomass                                                                       | -                                                   | 8,44                          | 10,6                   |                                         | -                                             | 1.05                                     | 3,82                           | -                  | -         | 4.1                                              |                       | <ul> <li>22,8</li> <li>- 38,8</li> </ul> |                           | 0,01                         | -                   |                          | -    |                                            |                                              | -                                    | -                    | - 0.92                   | -                        | 0,00               |                                                                | -2,91                         |                                   | 0,00 -0,                 | 60<br>00                      |
| Biomass<br>Renewable                                                                   | 1,81                                                | -                             | -                      | 0                                       | ,77                                           | 1,05                                     | -                              | 1                  | - 1       | 4,1                                              |                       | - 38,8                                   | -                         | 2                            | 12.63               | 41,75                    | 6.46 | 5 0,7                                      | 9                                            | -<br>5,39                            | 2                    | 0,92                     | 19,03                    | 66,60<br>71,47     |                                                                | 66,60<br>71,47                |                                   |                          | 00                            |
| H2 etc.                                                                                | 1                                                   | 0,00                          | 0,0                    | 0 0                                     | ,00                                           | 0,00                                     | 0,00                           | - 1                | - 1       |                                                  | -24,                  | 77 -10,8                                 | 35 3                      | 5,62                         |                     |                          |      | . 0,7                                      | . '                                          | -                                    | -                    | 1                        | -                        | 0,00               |                                                                | 0,00                          |                                   |                          | 00                            |
| Biofuel                                                                                | -                                                   | -                             | -                      |                                         | -                                             | -                                        | -                              |                    | -         |                                                  |                       | -                                        |                           | 2,15                         | -                   | -                        | -    |                                            |                                              | - 3                                  | 2,15                 | -                        | -                        | 0,00               |                                                                | 0,00                          |                                   |                          | 00                            |
| Nuclear/C                                                                              | CS -                                                | -                             | -                      |                                         | -                                             | -                                        | -                              | -                  | -         | -                                                |                       | -                                        | -                         | -                            | -                   | -                        | -    |                                            |                                              | -                                    | -                    | -                        | -                        | 0,00               | 0,00                                                           | 0,00                          |                                   | 0,00 0,                  | 00                            |
| Total                                                                                  | 1,81                                                | 8,44                          | 10,6                   | 1 0                                     | ,77                                           | 1,05                                     | 3,82                           | -                  | -         | 7,6                                              | 1 -24,                | 77 5,1                                   | 17 :                      | 3,45                         | 12,63               | 41,75                    | 6,46 | 6 0,7                                      | 9 (                                          | 6,39 3                               | 2,15                 | 0,92                     | 19,03                    | 138,07             | 7 -2,92                                                        | 135,16                        |                                   | 0,00 -0,                 | 60                            |
|                                                                                        |                                                     |                               |                        |                                         |                                               |                                          |                                |                    |           |                                                  |                       |                                          |                           |                              |                     |                          |      |                                            |                                              |                                      |                      |                          |                          |                    |                                                                |                               | 26-janu                           | ar-2015 [1               | 13:01]                        |

Figure 26: Sample of the WARNING for excess electricity production on the results printout of EnergyPLAN.

# **6** Conclusions

The EnergyPLAN model is extremely useful because it is simple to use. However, this simplicity creates a responsibility on the user to ensure that the data inputted is as accurate and relevant as possible. The time required to build the reference model is cumbersome as there is a lot of false paths along the way. However, the wave of possibilities that present themselves upon completion of the reference model, ensure that the time spent searching for data becomes a worthy experience.

Once the reference model is completed, it is possible to build and analyse energy systems with endless quantities of renewable energy, conventional plant, energy storage, and transport technologies, in a relatively short period of time.

Finally, the level of detail discussed in this report is not necessary for every study completed using EnergyPLAN, especially in relation to the distributions used. Therefore, before spending a large period of time gathering data, ensure that the data is required for the accuracy of the results.

# 7 Appendix

7.1 Ireland's Energy Balance 2007

| Ireland                                                                                                               | <b>'</b>               | <b>S</b> ]   | E                   | n                   | e           | r           | g            | y              | 7                      | B                 | Ba    |                          | a                | ľ            | 1(        | Ce                  | 9                               | 2                                | 20                             | )(                                         | 0                                   | 7                           |                             |                                    |                        |                                                              |                         |                   |                                                                                            |                                           |                        |                                    |                                 |        |                   |             |                                           |                    |                           |                                       |                                              |                             |                                                              |                    |                            |                                |                             |                      |                                            |                                        |              |              |         |                       |                            |
|-----------------------------------------------------------------------------------------------------------------------|------------------------|--------------|---------------------|---------------------|-------------|-------------|--------------|----------------|------------------------|-------------------|-------|--------------------------|------------------|--------------|-----------|---------------------|---------------------------------|----------------------------------|--------------------------------|--------------------------------------------|-------------------------------------|-----------------------------|-----------------------------|------------------------------------|------------------------|--------------------------------------------------------------|-------------------------|-------------------|--------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|------------------------------------|---------------------------------|--------|-------------------|-------------|-------------------------------------------|--------------------|---------------------------|---------------------------------------|----------------------------------------------|-----------------------------|--------------------------------------------------------------|--------------------|----------------------------|--------------------------------|-----------------------------|----------------------|--------------------------------------------|----------------------------------------|--------------|--------------|---------|-----------------------|----------------------------|
| * Industry sub-sectoral breakdown is based on<br>the CIP 2004.<br>Last Updated 2:45ep 2008<br>Key<br>2007 Provisional | Statistical Difference | Agricultural | Commercial Services | Commercial Services | Kesidential | Unspecified | ruei iourism | Evel Territory | International Ariation | Demostic Aviation | Rail  | Public Passancer Sandras | Road Private Car | Road Freight | Transport | Other manufacturing | Transport equipment manufacture | Electrical and optical equipment | Machinery and equipment n.e.c. | Basic metals and fabricated metal products | Other non-metallic mineral products | Rubber and plastic products | Chemicals & man-made fibres | Pulp paper publishing and printing | Wood and wood products | Food, beverages and tobacco<br>Textiles and textile products | Food becomen and tobaco | Mon Encour Mining | Total Final Energy Consumption                                                             | Final non-Energy Consumption (Feedstocks) | Non-Energy Consumption | Available Final Energy Consumption | Own Use and Distribution Losses | Other  | Lieculoty<br>Heat | Electricity | Oil Hefineries<br>Exchanges and transfers | Briquetting Plants | Pumped Storage Generation | Combined Heat and Power Plants - Heat | Combined Heat and Power Plants - Electricity | Public Thermal Power Plants | Oil relitienes & other energy secon<br>Transformation Output | Briquetting Plants | Pumped Storage Consumption | Combined Heat and Power Plants | Public Thermal Power Plants | Transformation Input | Primary Energy Requirement (excl. non-ener | Primary Energy Supply (ind non-energy) | Stock Change | Mar. Bunkers | Exports | Indigenous Production | 2007 Units = TWh           |
|                                                                                                                       | 0.31                   | 0.00         | 0.00                | 0.00                | 0.74.7      | 000.0       | 0.00         | 0.000          | 0.000                  | 0.000             | 0.000 | 0 0 0 0                  | 0.000            | 0.000        | 0.000     | 0.000               | 0.000                           | 0.000                            | 0.000                          | 0.000                                      | 1.391                               | 0.000                       | 0.000                       | 0.004                              | 0.000                  | 0.075                                                        | 0.00                    | 0.000             | 4.354                                                                                      | 0.000                                     | 0.000                  | 4.663                              | 0.000                           | 0.194  | 0.000             | 0.000       | 0.000                                     | 0.000              | 0.000                     | 0.000                                 | 0.000                                        | 0.000                       | 0.000                                                        | 0.000              | 0.000                      | 0.000                          | 13.071                      |                      | 917                                        | _                                      | 1.059        | 0.000        | 0.02    | 0.000                 | Coal                       |
|                                                                                                                       | 0.31                   | 0.000        | -                   | -                   | +           | 0.000       | +            | 0.000          | +                      | +                 | +     | -                        | -                | -            | -         | +                   | -                               | 00000                            | -                              | -                                          | 1 1391                              | -                           | -                           | -                                  | 0.000                  | +                                                            | +                       |                   | 4 3.568                                                                                    | _                                         |                        |                                    | 0.000                           | -      | 0.000             | +           | 0.000                                     | +                  | 6                         |                                       |                                              | -                           | 000.0                                                        | +                  | +                          | -                              | 1 13.071                    | -                    | 17                                         | 17                                     | -            | -            | -       | 0 0.000               |                            |
|                                                                                                                       | ω<br>6                 |              |                     | t                   | t           |             | +            | +              | t                      | +                 | +     | $^+$                     | +                | +            |           | +                   | +                               |                                  |                                |                                            |                                     | +                           | 1                           | +                                  | +                      | +                                                            | +                       |                   |                                                                                            | F                                         |                        | H                                  | +                               | +      | +                 |             |                                           | 1                  | -                         | +                                     |                                              | +                           | +                                                            | +                  | +                          | +                              | ⊢                           |                      | H                                          | _                                      | +            | +            | +       | 1                     | Anthracite +               |
|                                                                                                                       | .003                   |              | 000                 |                     | 0.699       |             |              | +              |                        |                   | +     | +                        | _                |              |           |                     | 4                               |                                  |                                |                                            |                                     |                             |                             |                                    |                        |                                                              |                         |                   | 0.709                                                                                      |                                           |                        |                                    |                                 |        | 0.000             |             | 0.000                                     |                    |                           |                                       | 0.000                                        |                             | 0.000                                                        | +                  | +                          |                                | 0.000                       |                      | 0.388                                      | 4                                      | _            | 0.000        | 0.036   | 0.000                 | Manufactured<br>Ovoids     |
|                                                                                                                       | 000.0                  | 0.000        | _                   | _                   |             |             |              |                |                        | _                 |       | -                        | -                |              |           |                     |                                 |                                  | 8                              | -+                                         |                                     |                             | 8                           | 8                                  |                        |                                                              |                         | 0.000             | 0.000                                                                                      |                                           |                        | -                                  |                                 | 88     |                   | +           | 88                                        | -                  | +                         | +                                     |                                              |                             | 0.000                                                        | -                  | +                          | +                              | 0,000                       |                      | 0.000                                      | 0.000                                  | -            | 8            | 38      | 88                    | Coke                       |
|                                                                                                                       | 0.000                  | _            | 0000                | _                   | 0.068       |             |              | 0.000          | -                      | -                 | -     | -                        | _                |              | _         | -                   | -                               | -                                | _                              | -                                          |                                     | 0000                        | 0000                        |                                    |                        |                                                              |                         | 0.000             | 0.076                                                                                      |                                           |                        |                                    |                                 | 0000   | _                 | -           | 0000                                      | 0000               | _                         | _                                     | 0.000                                        | _                           | 000.0                                                        | -                  | +                          | 0.000                          | 0000                        |                      | 0.076                                      | 0.076                                  | 0.016        | 0000         | 0,000   | 0000                  | Lignite                    |
|                                                                                                                       | -0.262                 | 0.000        | 0.000               | 0.000               | 3.155       | 0.000       | 0.000        | 0.000          | 0.000                  | 0.000             | 0.000 | 0 0 0 0                  | 0.000            | 0.000        | 000.0     | 0.003               | 0.000                           | 0.000                            | 0.000                          | 0.000                                      | 0.000                               | 0.000                       | 0.000                       | 0.000                              | 0.000                  | 0.000                                                        | 0.000                   | 0.000             | 3.159                                                                                      |                                           | 0.000                  |                                    | _                               | 0.000  | 0.000             | 0.000       | 0.000                                     | 1.100              | 0.000                     | 0.000                                 | 0.000                                        | 0.000                       | 1.100                                                        | 1.093              | 0.000                      | 0.082                          | 5.010                       |                      | 8.158                                      | 8.158                                  | 1.374        | 0.000        | 0.002   | 6.876                 | Peat                       |
|                                                                                                                       | -0.258                 | 0.000        | 0.000               | 0.000               | 0.000       | 0.000       | 0.000        |                | 0.000                  | 800<br>80         | 0000  | 2000                     | 0.000            | 0.000        | 0.000     | 0.000               | 0.000                           | 0.000                            | 0.000                          | 8000                                       | 0.000                               | 0.000                       | 0000                        | 0.000                              | 0000                   | 0000                                                         | 0.000                   | 0.000             | 0.000                                                                                      |                                           | 0.000                  | -0.258                             | 0.176                           | 0.000  | 0.000             | 0.000       | 0.00                                      | 0.000              | 0.000                     | 0.000                                 | 0.000                                        | 800                         | 0.000                                                        | 1.093              | 0.000                      | 0.082                          | 5.010                       | 6.186                | 6.103                                      | 6.103                                  | 1.393        | 0.000        | 0000    | 4711                  | Milled Peat                |
|                                                                                                                       | -0.004                 | 0.000        |                     | 0.000               | 2.16/       | 0000        | 0000         |                | 0000                   | 8                 | 0000  |                          | 800              | 0000         | 000.0     | 000                 | 0000                            | 0000                             | 0000                           | 8                                          | 0000                                | 0000                        | 0000                        | 0000                               | 800                    | 0000                                                         |                         | 0.000             | 2.167                                                                                      | 0.000                                     | 000.0                  | 2.163                              | 0000                            | 800    | 0000              | 0000        | 0000                                      | 0000               | 0.000                     | 0.000                                 | 0.000                                        | 000                         | 000.0                                                        | 0000               | 00000                      | 0.000                          | 0000                        | 000.0                | 2.163                                      | 2.163                                  | -0.002       | 000          | 0000    | 2.165                 | Sod Peat                   |
|                                                                                                                       | 0.000                  | 0.000        | 0.000               | 0.000               | 0.988       | 0.000       | 0.000        | 0.000          | 0.000                  | 0.000             | 0.000 | 0.000                    | 0.000            | 0.000        | 0.000     | 0.003               | 0,000                           | 0.000                            | 0.000                          | 0.000                                      | 0.000                               | 0.000                       | 0.000                       | 0.000                              | 0.000                  | 0.000                                                        | 0.000                   | 0000              | 0.992                                                                                      | 0.000                                     | 0.000                  | 0.992                              | 0.000                           | 0.000  | 0.000             | 0.000       | 0.000                                     | 1.100              | 0.000                     | 0.000                                 | 0.000                                        | 0.000                       | 1.100                                                        | 0.000              | 0.000                      | 0.000                          | 0.000                       | 0.000                | -0.108                                     | -0.108                                 | -0.017       | 0.000        |         | 0.000                 | Briquettes                 |
|                                                                                                                       | -1.949                 | 2.936        | 4.1/0               | 4 170               | 13.113      | 4.769       | 1.004        | 7261           | 11 537                 | 0.625             | 0.500 | 880 0                    | 25.141           | 13.798       | 65.812    | 0.211               | 0.031                           | 0.849                            | 0.096                          | 3.763                                      | 3.913                               | 0.070                       | 0.563                       | 0.088                              | 0.146                  | 0.110                                                        | 1 4 5 7                 | 0 403             | 100.064                                                                                    | 3.374                                     | 3.374                  | 101.49                             | 1.431                           | -0.085 | 0.000             | 0.000       | 39.049                                    | 0.000              | 0.000                     | 0.000                                 | 0.000                                        | 0.000                       | 30.049                                                       | 0.000              | 0.000                      | 0.096                          | 4.275                       | 44.634               | 105.220                                    | 108.59                                 | 2.209        | 1.324        | 15.10   | 0.000                 | oil                        |
|                                                                                                                       | 0.00                   | 0.000        |                     | +                   | -           | -           | +            | +              |                        | +                 | +     | +                        | +                | -            | -         | +                   | +                               | 0.000                            | -                              | -                                          | 000                                 | -                           | +                           | +                                  | +                      | +                                                            | -                       |                   | 4 0.000                                                                                    |                                           |                        | -                                  | +                               | +      | 0000              |             |                                           | +                  |                           |                                       |                                              | -                           | 0.000                                                        | +                  | +                          | -                              | 0.000                       |                      | 0 40.263                                   | 3 40.2                                 | -0.3         | 8            |         | 0.000                 | Crude                      |
|                                                                                                                       | 0.00                   | 0.00         |                     |                     | -           |             | +            |                | +                      | +                 | +     | -                        | -                | _            | _         | -                   | +                               | -                                | _                              | 0.000                                      | -                                   | -                           | +                           | -                                  | -                      | _                                                            | _                       |                   | 0.000                                                                                      |                                           | -                      | 0                                  | -                               | +      | 0.000             | +           | 0.000                                     | 0.000              | +                         | -                                     | 0 0.000                                      | -                           | 0 1.085                                                      | -                  | +                          | +                              | 0.000                       | -                    |                                            | 63 0.000                               | +            | 0.000        | 0.00    | 0.00                  | Refinery Gas               |
|                                                                                                                       | 00-1.7                 | 0.0          | 0.000               |                     |             | -           | +            | 00000          | +                      | +                 | _     |                          | _                | -            |           | _                   | _                               | ~                                |                                |                                            | -                                   | 0.000                       | _                           | +                                  | -                      | +                                                            | +                       | -                 | 00 22.3                                                                                    | 000.00                                    | -                      | N                                  | 0.000                           | -0.081 |                   | -           | 5 .0                                      | 28                 | -                         |                                       | 0                                            | -                           | 85 6.108                                                     |                    |                            | -                              | 0.000                       | -                    | -                                          | T.                                     |              | 0.000        | 0.0     | 14.0                  | Gasoline                   |
|                                                                                                                       | 59 -0.                 | -            |                     |                     | +           | -           | +            | +              | +                      | +                 |       | +                        | -                | -            | -         | +                   | +                               | -                                |                                | 000                                        | +                                   | +                           |                             | +                                  | +                      | +                                                            | +                       |                   | 22.325 10.620                                                                              | 00                                        | +                      | -                                  | -                               |        |                   |             | 08 2.4                                    |                    |                           |                                       |                                              | +                           | +                                                            |                    | +                          |                                | -                           | -                    | -                                          | 5                                      |              |              |         | 00                    |                            |
|                                                                                                                       | 548 -0                 | -            |                     |                     | 9.182 0     | +           | +            |                | +                      | +                 | +     | +                        | +                | -            |           | +                   | +                               | _                                | -                              | .037                                       | +                                   | 0.002                       | +                           | +                                  | +                      | +                                                            | +                       |                   | _                                                                                          | -                                         |                        | 072 11                             | 0.000                           | 2213   |                   |             | 212 0                                     | +                  | +                         | +                                     |                                              | +                           | 2.459 0                                                      | +                  | +                          | -                              | 0.000 0                     |                      | 5.399 13                                   | 399 13                                 | -            | 0000         |         | 000                   | Kerosene                   |
|                                                                                                                       | .870                   | 000          | 000                 | +                   | 0.000       | -           | +            | 122/           | -                      | +                 | 0.000 | +                        | +                | -            | -         | +                   | 0.000                           | 0.000                            | 0.000                          | 000                                        | 0.000                               | 0.000                       | 0.000                       | 000                                | 0.000                  | +                                                            | +                       | 0.000             | -                                                                                          | 0.000                                     | -                      | .264                               | 000                             | 2213   | 000               | 8           | 0.000                                     | 0.000              | 0.000                     | 0.000                                 | 0.000                                        | _                           | 0.000                                                        | 0.000              | +                          | +                              | 0.000                       | -                    | 3.476                                      | 3.476                                  | 560          | +            | 0000    | 000                   | Jet Kerosene               |
|                                                                                                                       | 0.166                  | 0.000        | 0.011               | 0.110               | 0.000       | -           | +            | +              | +                      | +                 | 0.000 | 000                      | 0.000            | 0.000        | 0.000     | 0.090               | -                               | _                                | 0.029                          | 2.619                                      | -                                   | 0.008                       | 0.294                       | -                                  | +                      | +                                                            | _                       | 0.020             | 4.295                                                                                      | -                                         | -                      | 4.461                              | -                               | -      | 0.000             | 0000        | 0 306                                     | 0.000              | +                         | -                                     |                                              | -                           | 14.322                                                       | 0.000              | 0.000                      | 0.000                          | 4.233                       | -                    | 5.568                                      | 5.568                                  | 1.519        | 0.769        | 12121   | 000.0                 | Fueloil                    |
|                                                                                                                       | 0.051                  | 0.000        | 0.090               | 0.000               | 168.0       | 0.000       | 0.000        | 0.000          | 0.000                  | 0.000             | 0.000 | 000                      | 0.012            | _            |           | 0.011               | 0.001                           | 0.612                            | 0.024                          | 0.030                                      | 0.037                               | 0.006                       | 0.015                       | 0.009                              | 0.000                  | 0.018                                                        | 0.001                   | 0.01              | 1.853                                                                                      |                                           | 0.000                  | 1.802                              | 0.045                           | 0.000  | 0.000             | 0.000       | 0.468                                     | 0.000              | 0.000                     | 0.000                                 | 0.000                                        | _                           | 0.468                                                        | 0.000              | 0.000                      | 0.003                          | 0.000                       | 0.003                | 1.381                                      | 1.381                                  | 0.031        | 0.000        | 0.176   | 0.000                 | LPG                        |
|                                                                                                                       | 1.030                  | 2.936        | 2 1009              | 0.109               | 2.6/6       | 5,948       | 0400         | 5 242          | 0.000                  | 0000              | 0.500 | 1563                     | 6.290            | 13,708       | 31.341    | 0.074               | 0.022                           | 0.139                            | 0.035                          | 0.078                                      | 0.439                               | 0.054                       | 0.179                       | 0.037                              | 0.058                  | 0.056                                                        | 0.418                   | 2.010             | 45.188 3.637                                                                               | 0.000                                     | 0.000                  | 46.217                             | 0.030                           | -0.116 | 0.000             |             | 14,490                                    | 0.000              | 0.000                     | 0.000                                 | 0.000                                        | 0.000                       | 14,490                                                       | 0.000              | 0.000                      | 0.000                          | 0.042                       | 0.042                | 31.916                                     | 31.916                                 | 0.490        | 0.555        | 0171    | 0.000                 | Ga soil / Die sel<br>/DERV |
|                                                                                                                       | 0.099                  | 0.000        | 0.000               | 0.000               | 0.358       | 0.000       | 0.000        | 0.000          | 0.000                  | 0.000             | 0.000 | 0.000                    | 0.000            | 0.000        | 0.000     | 0.000               | 0.000                           | 0.000                            | 0.000                          | 0.000                                      | 3.280                               | 0.000                       | 0.000                       | 0.000                              | 0.000                  | 0.000                                                        | 0.000                   | 0.000             | 3.637                                                                                      | 0.000                                     | 0.000                  | 3.736                              | 0.000                           | 0.194  | 0.000             | 0000        | 0.000                                     | 0.000              | 0.000                     | 0.000                                 | 0.000                                        | 0.00                        | 0.000                                                        | 0.000              | 0.000                      | 0.000                          | 0.000                       | 0.000                | ω                                          | ω.                                     | 0.059        | 0.000        | 0.000   | 0.000                 | Petroleum Coke             |
|                                                                                                                       | -0.013                 | 0.000        |                     | 0.000               | 0.000       | -           |              |                |                        | 8                 | 88    | +                        | -                | -            | _         | 0.012               | 8                               | 0.000                            | .000                           | 8                                          | 800                                 | 8                           | ŝ                           | .00                                | 8                      | +                                                            | +                       |                   | 0.012                                                                                      | -                                         | -                      | 0.000                              | 0.000                           | 8      | 0.000             |             | 8 9.11/                                   | 0.000              | 0.000                     | 0.000                                 | 0.000                                        | -                           | 0.117                                                        | 0.000              | 0.000                      | 0.000                          | 0.000                       | 0.000                | -0.111                                     | -0.111                                 | 0.035        | 000          | 010     | 8                     | Naphta                     |
|                                                                                                                       | 0.000                  | 0.000        | 0.000               | _                   | _           | -           | _            | 0.000          | -                      | +                 |       | -                        | +                | _            | _         |                     | -+                              | 0                                | -                              | 0.000                                      | -+                                  | 0.000                       |                             | 0.000                              | _                      |                                                              | _                       | 0.000             | 0.000                                                                                      | 2.765                                     | -                      | N                                  | -                               | 0.000  | 0.000             |             | 0.000                                     | 0.000              | -                         | -                                     | 9                                            |                             | 0.000                                                        |                    |                            | +                              | 0.000                       | -                    | 0.000                                      | 2.765                                  | 0.000        | 0.000        | 0000    | 0.000                 | Bitumen                    |
|                                                                                                                       | 0.000                  | -            |                     |                     | 0.000       | -           | +            | 1              |                        |                   |       |                          |                  | _            | _         | _                   | _                               | ~                                | .0                             | 8                                          | ~                                   |                             |                             | _                                  |                        |                                                              | -                       |                   |                                                                                            | 0                                         |                        | 0.562                              | -                               |        | 0.000             |             |                                           | 10                 |                           |                                       | _                                            |                             |                                                              | 1                  |                            |                                | 0.00                        | -                    | H                                          |                                        | +            | 8            | +       | 0.00                  | White Spirit               |
|                                                                                                                       | 0.00                   | 0.000        | +                   |                     | +           |             | +            |                |                        |                   | B     |                          | 8                | 8            | 0.000     | 8                   | 8                               | 000                              | 8                              | 8                                          | 800                                 | 8                           | 8                           | 80                                 | 8                      |                                                              |                         |                   | 0.000                                                                                      | 0.04                                      | 0.04                   | 0.04                               | 0.00                            | 88     | 000               |             |                                           |                    | 0.00                      | 0.00                                  | 0.000                                        | 80                          | 0.00                                                         |                    | 0.00                       | 0.00                           | _                           |                      | $ \rightarrow $                            | _                                      | _            | _            | _       | 0.000                 | Lubricants                 |
|                                                                                                                       |                        |              | 2 108               |                     | 0.896       |             |              | 0.000          | 0.00                   | 0.00              | 0.00  | 0.00                     | 0.00             | 0.00         | 0.00      | 0.029               | 0.09                            | 0.32                             | 0.15                           | 2.058                                      | 0.63                                | 0.11                        | 1.42                        | 0.26                               | 0.04                   | 0.01                                                         | 20.2                    |                   | 18.42                                                                                      | 0.00                                      | 0.00                   | 17.42                              | 99.0                            | 0.00   | 0.00              | 0.00        | 0.00                                      | 0.00               | 0.00                      | 0.00                                  | 0.00                                         | 0.00                        | 0.00                                                         | 0.00               | 0.00                       | 2.738                          | 29.092                      | 31.830               |                                            | 49.923                                 |              | 0.000        | 0.00    | 4.30                  | Natural Gas                |
|                                                                                                                       |                        | 0.080        |                     |                     | 0.282       | _           |              | 0.000          | 0.00                   | 0.00              | 0.00  | 0.00                     | 0.24             | 0.00         | 0.24      | 0.00                | 0.00                            | 0.00                             | 0.00                           | 0.00                                       | 0.00                                | 0.00                        | 0.00                        | 0.00                               | 1.08                   | 0.00                                                         | 0.00                    |                   | 4 2.47                                                                                     | 0.00                                      | 0.00                   | 7 2.41                             | 0.00                            | 0.00   | 0.00              |             | 0.00                                      | 0.00               | 0.00                      | 0.00                                  | 0.03                                         | 0.10                        | 0.13                                                         | 0.00               | 0.00                       | 3 0.105                        | 2 0.27                      | 0 0.384              |                                            | 3 5.427                                |              | 0.00         | 0.00    | 4 5.211               | Renewables                 |
|                                                                                                                       | 00.0                   |              |                     |                     | 0.000       |             |              |                |                        | 000               | 000   |                          | 000              | 000          | 00.0      | 000                 | 000                             | 0000                             | •<br>00                        | •<br>000                                   | 0.00                                | 000                         | 000                         | 0000                               | 5 000                  |                                                              |                         |                   | 6 0.00                                                                                     | 0000                                      | 00.0                   | 0.00                               | 00.0                            |        | 000               | 0.0         | 0.00                                      | 0000               | 0.00                      | 0000                                  | 0000                                         | 2 0.00                      | 0.00                                                         | 0000               | 0000                       | 0000                           | 0000                        | 4 0.00               |                                            | _                                      |              | 0000         |         | 1 0.667               |                            |
|                                                                                                                       | 0.00                   | 0.000        |                     |                     |             | _           |              | 0.000          | 0.00                   | 0.0               | 0.0   | 0.0                      | 0.0              | 0.0          | 0.0       | 0.0                 | 0.0                             | 0.0                              | 0.0                            | 0.0                                        | 0.0                                 | 0.0                         | 0.0                         | 0.0                                | 0.0                    | 0.00                                                         | 0.0                     |                   | 0.0                                                                                        | 0.00                                      | 0.0                    | 0.00                               | 0.0                             | 0.00   | 0.0               |             | 0.0                                       | 0.0                | 0.0                       | 0.0                                   | 0.00                                         | 8                           | 0.0                                                          | 0.0                | 0.0                        | 0.000                          | +                           | -                    | -                                          | 7 1.959                                | _            | -            | +       | 7 1.959               |                            |
|                                                                                                                       | 0.0                    | _            |                     | _                   | -           | -           | -            |                |                        | 8                 | 800   | 8                        | 88               | 00           | 0.0       | 8                   | 8                               | 00<br>00                         | 8                              | 8                                          | 8<br>00                             | 8                           | 8                           | 00                                 | 1.0                    |                                                              | 500                     |                   | 1 2.1                                                                                      | 0.0                                       | 0.0                    | 00 2.0                             | 00                              | 80     | 00                |             |                                           | 200                | 00                        | 8                                     | 0.0                                          | 8                           | 0.0                                                          |                    | 0.0                        | 0.037                          | 0.001                       | 0.0                  |                                            | 59 2.135                               |              | +            | +       | 1.991                 |                            |
|                                                                                                                       | 0.0                    | _            | _                   | _                   |             |             |              |                | 38                     | 38                | 88    | 3                        | 88               | 8            | 0.0       | 8                   | 8                               | 8                                | 8                              | 8                                          | 8                                   | 8                           | 8                           | 8                                  | 88                     | 3 9                                                          | 0.00                    |                   | 56 0.0                                                                                     | 8                                         | 00 0.0                 | 97 0.0                             | 8                               | 88     | 8                 | 5           | 9.0                                       | 88                 | 8                         | 8                                     | 13 0.0                                       | 81                          | 13 0.1                                                       | 88                 | 88                         | 37 0.0                         |                             | 0.038 0.278 0.068    |                                            |                                        |              | +            | +       | -                     |                            |
|                                                                                                                       | 00 0.                  | 0.000 0.     | _                   | _                   | _           | -           |              |                |                        | 000               | 000   | 0                        | 000              | 000          | 00 0.     | 000                 | 00                              | 00                               | 90<br>0                        | 00                                         | 00                                  | 00                          | 00                          | 00                                 | 000                    |                                                              |                         |                   | 000                                                                                        | 000                                       | 00 0.                  | 00 0.                              | 000                             | 000    | 0                 | 5 A<br>5 A  | 5 0                                       | 000                | 00                        | 00                                    | 000 0.                                       | 2                           | 02 0.                                                        | 000                | 000                        | 0.000 0.                       | 0.278 0                     | 278 0.               | 278 0.                                     | 0.278 0.                               |              | +            | +       | 0.278 0.              |                            |
|                                                                                                                       | 000 0.                 |              | 0.02/ 0             |                     | 0.000 0     |             |              |                | 38                     | 88                | 88    | 3                        | 88               | 8            | 000 0     | 8                   | 8                               | 8                                | 8                              | 8                                          | 8                                   | 8                           | 8                           | 8                                  | 88                     | 33                                                           |                         |                   | 044 0                                                                                      | 8                                         | 000 0                  | 044 0.                             | 8                               | 88     | 8                 |             | 8                                         | 88                 | 8                         | 8                                     | 017 0                                        | 8                           | 017 0                                                        | 88                 | 88                         | 0.068 0                        |                             |                      |                                            |                                        |              | 000          | _       | 0.111 0               | Biogas                     |
|                                                                                                                       | .001 0.                | 0.000 0.     |                     |                     |             |             |              | 0.000          | 000 0                  | 000               | 000   | 000                      | 249 0            | 000          | 249 0     | 00                  | 000                             | 000 0                            | 000                            | 000                                        | 000                                 | 000                         | 000                         | 000                                | 000                    |                                                              |                         |                   | 249 0                                                                                      | 000 0                                     | 000 0.                 | .250 0.                            | 000 0                           | 000    | 000 0             | 000         |                                           | 000 0              | 000 0                     | 000 0                                 | 000 0                                        | 000                         | 000 0                                                        | 000                | 000 0                      | 0.000 0                        |                             |                      |                                            | 0.250 0.                               |              | 0.000 0      |         | 0.179 0               |                            |
|                                                                                                                       | 000                    |              |                     |                     |             |             |              |                | 3                      | 3 }               | B     | 3                        | 8                | B            | 000       | 8                   | 8                               | 8                                | 8                              | 8                                          | 8                                   | 8                           | 8                           | 8                                  | 8                      | 38                                                           |                         |                   | 015 0                                                                                      | 8                                         | 000 0                  | .015 0                             | 000                             | 8      | 88                | 3           | 88                                        | 8                  | 8                         | 000                                   | 000                                          | 8                           |                                                              | 88                 | 8                          | 0,000 0                        | 0 0000                      |                      |                                            | -                                      | -            | 0000         | +       | 0.015 0               |                            |
|                                                                                                                       | 000                    | 0.000        |                     | -                   | -           | -           | +            |                | 2000                   | 1000              | 000   | 8                        | 000              | 1000         | .000      | 000                 | 000                             | 000                              | ő                              | ő                                          | 000                                 | 000                         | 000                         | 000                                | 000                    | 1000                                                         | 1000                    |                   | 1.012                                                                                      | 0.000                                     | 000                    | .012                               | 1000                            | 000    | 1000              | 000         | 000                                       | 0000               | 000                       | 000                                   | 0000                                         | 000                         | 000                                                          | 0000               | 0000                       | 0.000                          | -                           |                      | 0.012                                      | +                                      | +            | +            | +       | 0.012                 | Geothermal                 |
|                                                                                                                       | 0.331                  |              | 3 466               |                     |             |             |              | 0.000          | 0.000                  | 0.000             | 0.052 | 0000                     | 0.000            | 0.000        | 0.052     | 0.307               | 0.107                           | 1.330                            | 0.200                          | 0.869                                      | 0.635                               | 0.373                       | 1.189                       | 0.369                              | 0.348                  | 0.005                                                        | 1 0 8 7                 | 0220              | 25.867                                                                                     | 0.000                                     | 0.000                  | 26.198                             | 2.666                           | 0.000  | 0.000             | 2.758       | 0.000                                     | 0.000              | 0.349                     | 0.000                                 | 1.826                                        | 23.330                      | 0.102                                                        | 000.0              | 0.546                      | 0.000                          | 0.000                       |                      | 1.331                                      | _                                      |              |              |         | 0.000                 | Electricity                |
|                                                                                                                       | 0.000                  | _            | 0.000               | -                   | 0.000       | 0.000       | +            | 0.000          | 0.000                  | 0.000             | 0.000 | 0000                     | 0.000            | 0.000        | 0.000     | 0.000               | 0.000                           | 0.000                            | 0.000                          | 0.000                                      | 0.000                               | 0.000                       | 0.000                       | 0.000                              | 0.000                  | 0.000                                                        | 0.000                   | 0.000             | .000 0.000 18.424 2.476 0.000 0.000 2.156 0.000 0.044 0.249 0.015 0.012 25.867 0.000 154.3 | 0.000                                     | 0.000                  | 0.000                              | 0.000                           | 0.000  | 0.000             | 0.000       | 0.000                                     | 0.000              | 0.000                     | 0.000                                 | 0.000                                        | 0.000                       | 0.000                                                        | 0.000              | 0.000                      | 0.000                          | 0.000                       |                      | -                                          | -                                      | _            | 0.000        | 0.000   | 0.000                 | Heat                       |
|                                                                                                                       | -2.621                 | 3.577        | 6.807               | 774.61              | 33,930      | 4./69       | 1001         | 1261           | 11 537                 | 2020              | 0552  | 880 0                    | 25.391           | 13.708       | 66.113    | 0549                | 0236                            | 2.505                            | 0.450                          | 0699                                       | 6574                                | 0556                        | 3,182                       | 0.723                              | 1.626                  | 0308                                                         | 7051                    | 1000              | 154.343                                                                                    | 3.374                                     | 3.374                  | 155.096                            | 4.938                           | 0.109  | 0.000             | 0000        | 39.049                                    | 1.100              | 0349                      | 0.000                                 | 1.856                                        | 23.432                      | 987.29<br>cht.0t                                             | 1.093              | 0546                       | 3.021                          | 51.727                      | 96.833               | 187.598                                    | 190.972                                | 4552         | 1324         | 12.312  | 16.390                | TOTAL                      |

Ireland's Provisional Energy Balance 2007 (TWh)

Aalborg University | Appendix 5

55

# 8 References

- [1] Aalborg University. EnergyPLAN: Advanced Energy System Analysis Computer Model. Available from: <u>http://www.energyplan.eu/</u> [accessed 8 September 2014].
- [2] Connolly D, Lund H, Mathiesen BV, Leahy M. A review of computer tools for analysing the integration of renewable energy into various energy systems. **Applied Energy** 2010;87(4):1059-1082.
- [3] University of Limerick. David Connolly. Available from: <u>http://dconnolly.net/</u> [accessed 27 October 2010].
- [4] Mathiesen BV, Lund H, Karlsson K. The IDA Climate Plan 2050. The Danish Society of Engineers and Aalborg University, 2009. Available from:
- <u>http://ida.dk/News/Dagsordener/Klima/Klimaplan2050/Sider/Klimaplan2050.aspx</u>.
   [5] Mathiesen BV, Lund H, Karlsson K. 100% Renewable Energy Systems, Climate Mitigation and Economic Growth. **Applied Energy** 2009;Article in Review.
- [6] Lund H, Mathiesen BV, Ingeniørforeningens Energiplan 2030 Tekniske energisystemanalyser, samfundsøkonomisk konsekvensvurdering og kvantificering af erhvervspotentialer. Baggrundsrapport (Danish Society of Engineers' Energy Plan 2030). 2006. Available from: <a href="http://ida.dk/omida/laesesalen/Documents/analyse">http://ida.dk/omida/laesesalen/Documents/analyse</a> og rapporter/energiplan baggrundsrapportsam let.pdf.
- [7] Lund H, Mathiesen BV. Energy system analysis of 100% renewable energy systems--The case of Denmark in years 2030 and 2050. **Energy** 2009;34(5):524-531.
- [8] The Danish Society of Engineers. The Danish Society of Engineers' Energy Plan 2030. The Danish Society of Engineers, 2006. Available from: <u>http://ida.dk/sites/climate/introduction/Documents/Energyplan2030.pdf</u>.
- [9] Blarke MB, Lund H. The effectiveness of storage and relocation options in renewable energy systems.
   Renewable Energy 2008;33(7):1499-1507.
- [10] Lund H. Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply. **Renewable Energy** 2006;31(4):503-515.
- [11] Lund H. Large-scale integration of wind power into different energy systems. **Energy** 2005;30(13):2402-2412.
- [12] EirGrid. Welcome to EirGrid. Available from: <u>http://www.eirgrid.com/</u> [accessed 8th November 2010].
- [13] Sustainable Energy Authority of Ireland. Welcome to the Sustainable Energy Authority of Ireland. Available from: <u>http://www.seai.ie/</u> [accessed 9th January 2011].
- [14] International Energy Agency. Energy Balances of OECD Countries. International Energy Agency, 2008. Available from: <u>http://www.iea.org/Textbase/publications/free\_new\_Desc.asp?PUBS\_ID=2033</u>.
- [15] International Energy Agency. Energy Balances of Non-OECD Countries. International Energy Agency, 2008. Available from: <u>http://www.iea.org/Textbase/publications/free\_new\_Desc.asp?PUBS\_ID=1078</u>.
- [16] Sustainable Energy Ireland. Energy Balance 2007. Sustainable Energy Ireland, 2008. Available from: http://www.sei.ie/Publications/Statistics\_Publications/2007\_Energy\_Balance/.
- [17] Meteotest. METEONORM. Available from: <u>http://www.meteonorm.com/pages/en/meteonorm.php</u> [accessed 30th March 2009].
- [18] ENTSO-E. We are the European TSOs. Available from: <u>http://www.entsoe.eu/</u> [accessed 17th May 2010].
- [19] ENTSO-E. Statistical Database. Available from: <u>http://www.entsoe.eu/index.php?id=67</u> [accessed 17th May 2010].
- [20] Sustainable Energy Authority of Ireland. Wind Speed Mapping. Available from: http://esb2.net.weblink.ie/SEI/MapPage.asp [accessed 23rd February 2009].
- [21] Marine Institute. Irish Marine Weather Buoy Network. Available from: http://www.marine.ie/home/publicationsdata/data/buoys/ [accessed 23rd February 2009].
- [22] Vestas. V90 3.0 MW. Vestas, 2007. Available from: <u>http://www.vestas.com/en/wind-power-solutions/wind-turbines/3.0-mw.aspx</u>.
- [23] Hannevig D. Oriel Windfarm Limited: Grid Connection Presentation. EirGrid, 2007. Available from: http://www.eirgrid.com/media/(7)%20Offshore%20Wind%20-%20Dan%20Hannevig%20-%20Sure%20Engineering.pdf.
- [24] European Communities. Solar radiation and photovoltaic electricity potential country and regional maps for Europe. Available from: <u>http://sunbird.jrc.it/pvgis/cmaps/eur.htm</u> [accessed 13th November 2010].

- [25] Met Éireann. Met Éireann. The Irish Meteorological Service Online. Available from: http://www.met.ie/ [accessed 4th September 2009].
- [26] Klima- og Energiministeriet. Danmarks Meteorologiske Institut. Available from: <u>http://www.dmi.dk</u> [accessed 13th November 2010].
- [27] Sustainable Energy Authority of Ireland. Tidal and Current Energy Resources in Ireland. Sustainable Energy Authority of Ireland, 2004. Available from: <u>http://www.seai.ie/Grants/Renewable\_Energy\_RD\_D/Projects\_funded\_to\_date/Ocean/Tidal\_and\_M</u> <u>arine\_Current\_Energy\_Resource\_in\_Ireland/</u>.
- [28] Electricity Supply Board (ESB) International. All-Island Grid-Study: Renewable Energy Resource Assessment (Workstream 1). Electricity Supply Board (ESB) International, 2008. Available from: <u>http://www.dcenr.gov.ie/Energy/North-South+Co-</u> <u>operation+in+the+Energy+Sector/All+Island+Electricity+Grid+Study.htm</u>.
- [29] Whittaker T, Fraenkel PL, Bell A, Lugg L, The potential for the use of marine current energy in Northern Ireland. 2003. Available from: <u>http://www.detini.gov.uk/cgi-bin/moreutil?utilid=41&site=99&util=2</u>.
- [30] Environmental Change Institute, University of Oxford. Variability of UK Marine Resources. Environmental Change Institute, University of Oxford, 2005. Available from: <u>http://www.carbontrust.co.uk/NR/rdonlyres/EC293061-611D-4BC8-A75C-9F84138184D3/0/variability\_uk\_marine\_energy\_resources.pdf</u>.
- [31] MathWorks. MATLAB The Language Of Technical Computing. Available from: http://www.mathworks.com/products/matlab/ [accessed 4 November 2010].
- [32] Marine Institute. Marine Institute. Available from: <u>http://www.marine.ie/Home/</u> [accessed 10th January 2009].
- [33]
   NDBC. National Data Buoy Center Stations. Available from:

   <a href="http://www.ndbc.noaa.gov/to\_station.shtml">http://www.ndbc.noaa.gov/to\_station.shtml</a> [accessed 17th February 2009].
- [34] SEMO. The Single Electricity Market Operator. Available from: <u>http://www.sem-o.com/</u> [accessed 18th January 2010].
- [35] Task Committee on Pumped Storage of the Committee on Hydropower of the Energy Division of the American Society of Civil Engineers. Hydroelectric Pumped Storage Technology: International Experience. American Society of Civil Engineers, 1996. Available from: <u>http://cedb.asce.org/cgi/WWWdisplay.cgi?9601277</u>.
- [36] Met Eireann. Degree Days. Available from: <u>http://www.met.ie/climate/degree-day.asp</u> [accessed 18th January 2012].
- [37] The Chartered Institution of Building Services Engineers. Degree-days: theory and application. The Chartered Institution of Building Services Engineers, 2006. Available from: <u>http://www.cibse.org/</u>.
- [38] Department for Business Enterprise & Regulatory Reform (United Kingdom). Energy Trends:
   September 2008. Department for Business Enterprise & Regulatory Reform (United Kingdom), 2008.
   Available from: <a href="http://www.berr.gov.uk/whatwedo/energy/statistics/publications/trends/index.html">http://www.berr.gov.uk/whatwedo/energy/statistics/publications/trends/index.html</a>.
- [39] Sustainable Energy Authority of Ireland. Dwellings Energy Assessment Procedure: Version 3. Sustainable Energy Authority of Ireland, 2008. Available from: http://www.seai.ie/Your Building/BER/BER Assessors/Technical/DEAP/.
- [40] O'Leary F, Howley M, Ó'Gallachóir B, Sustainable Energy Authority of Ireland. Energy in the Residential Sector. Sustainable Energy Authority of Ireland, 2008. Available from: http://www.seai.ie/Publications/Statistics\_Publications/EPSSU\_Publications/.
- [41] Department of Communications, Marine and Natural Resources (Ireland). Bioenergy Action Plan for Ireland. Department of Communications, Marine and Natural Resources (Ireland), 2006. Available from: <u>http://www.dcenr.gov.ie/NR/rdonlyres/6D4AF07E-874D-4DB5-A2C5-63E10F9753EB/27345/BioenergyActionPlan.pdf</u>.
- [42] PlanEnergi. The Danish Society of Engineers' Energy Plan 2030: Solar Distribution. PlanEnergi, 2006. Available from: <u>http://www.planenergi.dk/</u>.
- [43] Central Statistics Office Ireland. Census 2006: Housing. Central Statistics Office Ireland, 2007. Available from: <u>http://www.cso.ie/census/</u>.
- [44] Howley M, Ó'Gallachóir B, Dennehy E. Energy in Ireland 1990 2007. Sustainable Energy Authority of Ireland, 2008. Available from: <u>http://www.seai.ie/Publications/Statistics\_Publications/Archived\_Reports/</u>.

# January 26, 2015 FINDING AND INPUTTING DATA INTO ENERGYPLAN

- [45] Münster M. Energy System Analysis of Waste-to-Energy technologies. PhD Thesis, Department of Development and Planning, Aalborg Unviersity, Aalborg, Denmark, 2009. Available from: <u>http://vbn.aau.dk/files/19177001/MM\_PhD\_Thesis to\_VBN\_100112\_1\_.pdf</u>.
- [46]International Energy Agency. World Energy Outlook 2008. International Energy Agency, 2008.<br/>Available from: <a href="http://www.worldenergyoutlook.org/2008.asp">http://www.worldenergyoutlook.org/2008.asp</a>.
- [47] Danish Energy Agency. Forudsætninger for samfundsøkonomiske analyser på energiområdet (Prerequisites for socio-economic analysis of energy). Danish Energy Agency, 2009. Available from: <u>http://www.ens.dk/sw80140.asp</u>.
- [48] Hamelinck C, van den Broek R, Rice B, Gilbert A, Ragwitz M, Toro F. Liquid Biofuels Strategy Study for Ireland. Sustainable Energy Authority of Ireland, 2004. Available from: <u>http://www.seai.ie/uploadedfiles/InfoCentre/LiquidbiofuelFull.pdf</u>.
- [49] Sustainable Energy Authority of Ireland. A Study on Renewable Energy in the New Irish Electricity Market. Sustainable Energy Authority of Ireland, 2004. Available from: <u>http://www.seai.ie/Publications/Renewables\_Publications/</u>.
- [50] Danish Energy Agency, Energinet.dk. Technology Data for Energy Plants. Danish Energy Agency, Energinet.dk, 2010. Available from: <u>http://ens.dk/da-</u>
   <u>DK/Info/TalOgKort/Fremskrivninger/Fremskrivninger/Documents/Teknologikatalog%20Juni%202010.</u>
   pdf.
- [51] Gonzalez A, Ó'Gallachóir B, McKeogh E, Lynch K. Study of Electricity Storage Technologies and Their Potential to Address Wind Energy Intermittency in Ireland. Sustainable Energy Authority of Ireland, 2004. Available from: <u>http://www.seai.ie/Grants/Renewable\_Energy\_RD\_D/Projects\_funded\_to\_date/Wind/Study\_of\_Elec</u>
- <u>Storage Technologies their Potential to Address Wind Energy Intermittency in Irl.</u>
   [52] Danish Energy Agency. Basisfremskrivning af Danmarks energiforbrug frem til 2025 (Forecast of the
- Danish Energy Supply until 2025). Danish Energy Agency, 2008. Available from: <u>http://www.ens.dk/</u>.
   [53] Salmond N, 2008: Personal communication at the British Hydropower Association. Personal
- Communication, Received 23rd December, <u>http://www.british-hydro.org/</u>.
- [54] Lund H, Möller B, Mathiesen BV, Dyrelund A. The role of district heating in future renewable energy systems. **Energy** 2010;35(3):1381-1390.
- [55] Central Statistics Office Ireland. Household Budget Survey 2004-2005: Final Results. Central Statistics Office Ireland, 2007. Available from: <u>http://www.cso.ie/releasespublications/pr\_hseholds.htm</u>.
- [56] Lund H. A Green Energy Plan for Denmark. Environmental and Resource Economics 1998;14(3):431-439.
- [57] Connolly D, Leahy M. A Review of Energy Storage Technologies: For the integration of fluctuating renewable energy, Version 4.0. University of Limerick, 2010. Available from: <u>http://www.dconnolly.net/publications.html</u>.
- [58] Holttinen H, Hirvonen R, Power System Requirements for Wind Power, Wind Power in Power Systems, John Wiley & Sons Ltd., 2005, pp. 144-167.