Guideline to EnergyPLAN Exercise 2: Make Simple Energy System Analyses.

In exercise 2, you are asked to do a couple of energy system improvements of the energy system of exercise 1. Through the exercise and the guideline, you learn step by step how to analyse changes to the energy system.

Exercise 2 continues with the system defined in exercise 1, which is:

- Electricity demand of 49 TWh/year and "DK 2013 electricity demand"
- Condensing power plant: 9000 MW coal –fired
- 2000 MW wind power using "DK 2013 Wind onshore"
- Annual district heating demand of 39.18 TWh (distribution "hour distr heat")
- Fuel demand for individual house heating of 23.07 TWh divided into 0.01 coal, 6.72 oil, 9.05 natural gas and 7.29 biomass.
- Industrial fuel demand of 53.66 TWh divided into 3.37 coal, 26.92 oil, 18.19 natural gas and 5.18 biomass (including fuel for district heating and electricity production).
- Industrial district heating production of 1.73 TWh and an electricity production of 2.41 TWh. Use the hour distribution file "const".
- Fuel demand for transportation: 13.25 TWh Jet Petrol, 27.50 TWh Diesel and 28.45 TWh Petrol.

The system has a primary energy supply of 286.76 TWh/year and CO2 emissions of 77.77 Mt.

Exercise 2.1: Energy conservation in house heating

Open the EnergyPLAN model. Load the data of exercise 1. Assuming, that the district heating demand of 39.18 TWh/year is composed of 20% grid losses, 20% hot water and 60% space heating, implement energy conservation in house heating equal to 50% of the space heating demand. Do the same for the individual house heating demand of 19.70 TWh/year assuming that the demand is composed of 25% hot water and 75% space heating.

Consequently, the annual district heating demand will decrease by 50% of 60% from 39.18 to 27.43 TWh/year. And the heat demand for individual houses will decrease by 50% of 75% from 19.70 to 12.31 TWh/year.

Note that such energy conservation measures change the duration curves and, consequently, the existing hour distribution curves must be be replaced by "VpDkFjv50.txt" and Hour_indv-heat-50procent.txt.

Question 2.1.1: What is the peak hour district heating demand before and after implementing the energy conservation?

Question 2.1.2: What are the primary energy supply and the CO2 emission of the system after implementing such energy conservation measures?

How to do exercise 2.1:

Step 1: Open the EnergyPLAN model. You will see the following front page (version 16.21):

Look at the top bar: The EnergyPLAN model is loaded with "Startdata"

Choose "Exercise 1.txt" and activate the Open/Åbn button.

Look at the top bar: The EnergyPLAN model is loaded with "Exercise 1" data.

Step 3: Save Data as Exercise 2 data

Choose a name and type in the name, e.g.: "Execise2" and activate the Save/Gem button.

Look at the top left-hand corner: The EnergyPLAN model is loaded with "Exercise2" data.

Step 4: Read the peak hour district heating demand BEFORE energy conservation.

Activate the button and the following window will open:

Read the result: 7932 MW

Step 5: Change district heating demand and hour distribution file.

Open the "Demand > Heating" window:

Place the cursor in the electricity input square and type in 27.43.

Look at the Demand > Heating input window:

The model is loaded with "Hour-distr-heat.txt" distribution data.

Activate the Change button and the following window will open:

Choose "VpDkFjv50" and activate the Open/Åbn button.

Look at the Demand > Heating input window:

The model is loaded with "VpDkFjv50" distribution data.

Change input fuel consumption to 62.5% of previous value. And change distribution file to "Hour indv-heat-50procent.txt" and the window will look like this:

Activate the B Save button.

Inpu	t	Ex	erci	se2	.txt																The	e Er	ergy	/PLA	NI	mod	del 1	6.2	A
Fixed de	eating + H	49 IP 0		Fixed	le dema imp/exp portation	0,0	10 10			Group CHP Heat I	Pump	Ca MW 0)	l/s ele 0 0,4 0	0 0,5	er CO 50 3,0		CEEP	regulat um Stal	rategy: ion bilisation share of	00 share	ical regu 0000000 0,0 0,0	0		Elec. S	C: Storage	MW-	Stora	
District h Solar Th Industria	eating (TW eating den ermal I CHP (CS after solar	nand HP)		Gr.1 27,43 0,00 2,41 25,02	Gr.2 0,0 0,0 0,0 0,0	D (6r.3 0,00 0,00 0,00 0,00	Sum 27,4 0,0 2,4 25,0	0		o 3: Pump ensing	9000)	0 0 0,4 0 0 0 0,4	0,9 5	50 3,0 90		Minimu Heat F Maxim Distr. I	um PP ump m um imp		share	1,0	0 MW	- 1	Rockb	rge 1: e 2:	age:	0	0 0,80 0,90 0 0,80 0,90 0 0,80 0 0 1,00
Wind Photo Vo Wave Po		20	00 MW 0 MW 0 MW	1	0 T	Wh/yea Wh/yea Wh/yea	r 0,0	0 stab	ili-	Fixed	torage: Boiler: icity pro	gr.2: 0	0 GW 0 Per CSHP	cent		0 GW 0,0 Per /h/vear)		Depen	ication dency f ge Mark		2,00 0,00 227	DKK/N	fWh pr. I	MIVV .	TWh/		Coal 0,00	Oil 1	Ngas Bioma
River Hy Hydro Po Geothern		r	0 MV 0 MV	1	0 T	Wh/yea Wh/yea Wh/yea	ır	0 shar	e	Gr.1: Gr.2: Gr.3:			1,7 0,0 0,0	0,0	0				torage s capac s max to		0 0 0	GWh MW MW		1	House ndustr /ariou	у	0,01 3,37 0,00	4,20 26,92 0,00	4,66 4,5 18,19 5,1 0,00 0,0
Outp	out																												
				Dist	trict Hea	ting														Electri	icity								Exchang
-	Demand Distr.	0-1	Waste		Produc			D-11-	<u></u>	Ba-	Elec.	Flex.&		Elec-	F.1.	Hydro	Tur-	DE0	Ну-	Geo-	Waste			Stab-		alance	CEEP	EEP	Payment Imp E
	heating MW	Solar MW	MW	MW	MW	MW	MW	Boiler MW	MW	MW	MW	MW MW	MW	trolyser MW	MW	Pump MW	bine MW	RES MW	dro t	MW	MW	MW	PP MW		mp MW	Exp MW	MW	MW	Million DKI
January February	4674 4768	0	274 274	4399 4494	0	0	0	0	0	0	6508 6329	0	0	0	0	0	0	629 600	0	0	197 197	0	5682 5532	100 100	0	0	0	0	0
March April	4147 3438	0	274 274	3873 3164	0	0	0	0	0	0	6059 5468	0	0	0	0	0	0	475 445	0	0	197 197	0	5387 4826	100 100	0	0	0	0	0
May June	2823 1594	0	274 274	2548 1319	0	0	0	0	0	0	5047 5035	0	0	0	0	0	0	438 379	0	0	197 197	0	4412 4459	100 100	0	0	0	0	0
July August	1594 1594	0	274 274	1319 1319	0	0	0	0	0	0	4797 5037	0	0	0	0	0	0	288 331	0	0	197 197	0	4312 4509	100 100	0	0	0	0	0
Septembe	r 2139	0	274	1864	0	Ō	0	0	0	0	5252	0	0	0	0	0	0	424	0	0	197	0	4631	100	0	0	0	0	0
October November December		0	274 274 274	2629 3356 3947	0	0	0	0	0	0	5549 5909 5978	0	0	0	0	0	0	603 641	0	0	197 197 197	0	4930 5110 5141	100 100 100	0	0	0	0	0
Average	3123	0	274	2848	0	0	0	0	0	0	5578	0	0	0	0	0	0	472	0	0	197	0	4909	100	0	0	0	0	Average p
Maximum Minimum	7744 1468	0	274 274	7470 1193	0	0	0	0	0	0	8861 3317	0	0	0	0	0	0	1980 0	0	0	197 197	0	8480 1960	100 100	0	0	0	0	(DKK/M
TWh/year	27,43	0,00	2,41	25,02	0,00	0,00	0,00	0,00	0,00	0,00	49,00	0,00	0,00	0,00	0,00	0,00	0,00	4,15	0,00	0,00	1,73	0,00	43,12		0,00	0,00	0,00	0,00	0
FUEL BA	LANCE (T DHP	Wh/ye		P3 Bo	iler2 B	oiler3	PP	Geo/N	u. Hydr				Con- E sion F		Wind	PV an CSP	d Wind Wave		ro So	olar.Th.	Transp.	househ	Industry Various	,		Exp Co np/Exp	Net Net	- 1	2 emission (Notal Net
Coal	27.80	-	-		-	- 1	95,83	-	-		-			-	-	-	-	-		- 8	9.20	0,01 4,20	3,37 26,92	99,21 128,12	1 -	0,00	99,21 128,12	1 -	3,93 33,93 4,13 34,13
N.Gas		-			-	-	-	-			-	- :	-	-	-	-	-	-		- 0	-	4,66	18,19	22,85		00,0	22,85	'	4,66 4,66
Biomass Renewal	ole -	-			-	-	-		-		-	- :		-	4,15		-			-	-	4,55	5,18	9,73 4,15		0.00	9,73 4,15		0,00 0,00
H2 etc.	-	-			-	-	-	-	-		-		-	-	-	-	-	-		-	-	-	٠,	0,00	0	0,00	0,00		0,00 0,00
Biofuel Nuclear/	ccs -				-		1	-			-	- :		-	-	-	-			-	-	-	1	0,00		00,0	0,00		0,00 0,00
Total	27.80					_	95.83				_				4.15						9.20	13.42	3.66	264.05	١,	0.00	264 05	-	2.72

Read the results of question 1.2.2:

The Primary energy supply has been reduced from 286.76 to 264.05 TWh/year.

The CO2 emission has been reduced from 77.77 to 72.72 Mt/year.

Exercise 2.2: Replace district heating boilers by CHP

Replace the 27.43 TWh of district heating boilers by:

- 1.59 TWh of district heating boilers
- 10.00 TWh of small-scale CHP: 1350 MW, eff-th = 50%, eff-el = 41% on natural gas
- 15.84 TWh of large-scale CHP: 2000 MW, eff-th = 50%, eff-el = 41% on coal.
- Add boiler capacities of 5000 MJ/s in gr. 2 and gr. 3
- Add thermal storage capacity of 10 GWh in gr. 2 and gr. 3.
- Identify a 450 MW minimum production on the large-scale CHP units.
- Move 1.73 TWh of industrial excess heat production (2.41 of electricity) to gr. 3
- Chose simulation strategy "balancing both heat and electricity demands"

Question 2.2.1: What are the primary energy supply and the CO2 emission of the system?

Chose "Balancing and Storage" and "Thermal"

 Liquid and Gas Fuels -- CO2

⊕ Balancing and Storage

*) Replace only Oil - will be adjusted if the Oil demand is not big enough

Reg1

Allow for import/export

Place the cursor in the input squares and type in the various input values.

Step 2: Define a minimum operation on large-scale CHP

Chose "Balancing and Storage" and "Thermal"

Place the cursor in the input square and type in the 450 MW value.

Step 3: Define regulations strategy

Chose "Simulation"

Chose simulation strategy "2 Balancing both heat and electricity demands"

Step 4: Calculate and see result in print output (or clipboard)

Input	t	Ex	ercis	se2	.txt																The	e En	ergy	/PLA	N	mod	lel 1	6.2		1
Electric co	nand eating + H poling	49, P 0, 0,	00 00 00	Fixed i Transp Total	le dema imp/exp portation	o. 0,0 n 0,0 49,0	0 0 0			Group CHP Heat F Boiler				5 elec 0,41		r CO 0 3,0		Minimu Stabilis	regulat um Stat sation s		00 share CHP	ical regu 1000000 0,0 0,0 45	0	E	lec. S	Ca Storage e 1:	MW-e	Storage GWH	0,80	The
District he District he Solar The Industrial Demand	eating den rmal CHP (CSI	and		Gr.1 1,59 0,00 0,00 1,59	Gr. 10,0 0,0 0,0 10,0	00 15 00 (6r.3 5,84 0,00 2,41 3,43	Sum 27,4 0,0 2,4 25,0	D 1	Group CHP Heat F Boiler Conde	ump	2000 0 9000	0 5000		0,9	3,0	0	Minimu Heat P Maxim Distr. N	um PP 'ump m um imp	aximum ort/expo	share ort lour_no	1,0	0 MW 0 MW	E	harge ischa lectro lockb	arge 1: e 2: arge 2: olysers: ed Stora fuel rati	(age: (0,90 0 0,80 0,90 0 0,80 0 1,00))) 0,0
Wind Photo Vol	taic	20	00 MW 0 MW	4		Wh/yea Wh/yea					torage: Boiler:		0 GWh 0 Perc			10 GW 0,0 Per		Multipli Depen			2,00	DKK/N	//Wh pr. I	MW	TWh/	year)	Coal	Oil N	Ngas Bi	omas
Wave Por River Hyd Hydro Por Geotherm	lro wer	r	0 MW 0 MW 0 MW 0 MW		0 T	Wh/yea Wh/yea Wh/yea Wh/yea	r 0,0			Gr.1: Gr.2: Gr.3:	city pro	d. from	0,00 0,00 1,73	0,00)	h/year)		Averag Gas St Syngas Biogas	orage s capac		227 0 0 0	DKK/N GWh MW MW	//Wh	H Ir	ransp louse idustr ariou	hold y	0,01	69,20 4,20 26,92 0,00	0,00 4,66 18,19 0,00	0,00 4,55 5,18 0,00
Outp	ut																													
_	D			Dist	trict Hea															Electri						-1			Exch	ange
-	Demand Distr. heating	Solar		DHP	CHP	HP	ELT	Boiler	EH	Ba- lance		Flex.& d Transp.	HP tr	Elec- olyser	EH	Hydro	Tur- bine	RES	Hy- dro t	Geo- hermal	Waste	CHP	PP		np	Exp	CEEP		Payme	Ex
January	MW 4674	MW	MW 274	MW 271	MW 3943	MW	MW	MW 186	MW	MW	6508	MW	MW	MW	MW	MW	MW	MW 629	MW	MW	MW 197	MW 3234	MW 2448	% I	WN 0	MW	MW	MW	Million	DKK
February March	4768 4147	0	274 274	276	3953 3650	0	0	260	0	5 -27	6329	0	0	0	0	0	0	600 475	0	0	197 197	3241 2993	2291	100	0	0	0	0	0	
viaren April	3438	0	274	199	2964	0	0	0	0	-27	5468	0	0	0	0	0	0	445	0	0	197	2431	2395	100	0	0	0	0	0	
May	2823	0	274	164	2385	0	0	0	0	0	5047	0	0	0	0	0	0	438	0	0	197	1955	2457	100	0	0	0	0	0	
June July	1594 1594	0	274 274	92 92	1227 1227	0	0	0	0	0	5035 4797	0	0	0	0	0	0	379 288	0	0	197 197	1006 1006	3453 3306	100 100	0	0	0	0	0	
August	1594	0	274	92	1227	ō	ō	0	0	ō	5037	ō	o	ō	ō	ō	0	331	ō	0	197	1006	3502	100	0	0	ō	ō	0	
September		0	274	124	1740	0	0	0	0	0	5252	0	0	0	0	0	0	424	0	0	197	1427	3204	100	0	0	0	0	0	
October November	2903 3630	0	274 274	168 210	2461 3145	0	0	0	0	0	5549 5909	0	0	0	0	0	0	422 603	0	0	197 197	2018 2579	2912 2531	100 100	0	0	0	0	0	
December	4221	ō	274	245	3553	0	0	126	0	24	5978	ō	ō	0	ō	0	0	641	ō	0	197	2913	2227	100	0	0	ō	0	0	
Average	3123	0	274	181	2620	0	0	48	0	0	5578	0	0	0	0	0	0	472	0	0	197	2148	2761	100	0	0	0	0	Avera	ge pr
Maximum Minimum	7744 1468	0	274 274	449 85	4085 1108	0	0	2936 0	0	1920 -1212	8861 3317	0	0	0	0	0	0	1980	0	0	197 197	3350 909	5861 0	100 100	0	0	0	0	(DKI 221	K/MV
TWh/year	27.43	0.00	2.41		23.01	0.00	0.00	0.42	0.00	0.00	49.00	0.00		0.00	0.00	0.00	0.00	4.15	0.00	0.00	1.73		24.25		0.00	0.00	0.00	0.00	0	2
FUEL BA		_	ır):	-		Boiler3	PP		u. Hydn	Wa	ste/ C/	AES Bio	Con- Ele	ectro-	Vind	PV and		off		-,			Industry	у	Impi	/Exp Co	rrected	CO2	2 emissio	
Coal	UNP	UHP.	26,36				53.90	Geu/N	u. mydn	o nii		c.ly. vers	son ru	e 1	vinu	USF	wave	- nyai	J 30	nell . I fi.	manisp.		. Various 3.37	83.75	-		83.75	_	otal Ne	
Oil	1,77		20,30			0,07 ±	-							-	-	- 1	- 1			- 60	9,20	0,01 4,20	26,92	102,20		0,00	102,20		7,23 27	
N.Gas	-	19,66	-	0,	05	0,07	-	-	-					-	-	-	-	-		-	-	4,66	18,19	42,63		0,00	42,63	8	3,70 8,	.70
Biomass Renewabi	- la	-	-	0,	05	0,07	-	-	-					-	4.15	-	-	-		-	-	4,55	5,18	9,85 4.15		0,00	9,85 4.15			.00
H2 etc.	-	- 1					- 1								4,10	- 1	- 1	- 1			-			0,00	1 -	0,00	0,00		.,	.00
Biofuel	-	-	-		-	-	-	-	-					-	-	-	-	-		-	-	-	-	0,00	(0,00	0,00		0,00	,00
Nuclear/C		-	-		-	-	-	-	-					-	-	-	-	-		-	-	-		0,00		0,00	0.00	_	0,00	.00
Total	1.77	19.66	26.36		19	0.28	53.90								4,15					-	9.20	13.42	53.66	242.58			242.58	1 0	1,57 64	

Read the results of question 2.2.1:

The Primary energy supply has been reduced from 264.05 to 242.58 TWh/year.

The CO2 emission has been reduced from 72.72 to 64.57 Mt/year.

Exercise 2.3: Add 3000 MW off-shore wind power

Add 3000 MW off-shore wind power.

Use the hour distribution file "DK offshorewind 2013.txt"

The electricity production from CHP in combination with wind power may lead to hours in which the production exceeds the demand, known as excess electricity production. The energy system analysis will identify and quantify this excess production. However, such balancing problems depend on the regulation of the electricity production units. Basically, the model differs between operating CHP units 1) to meet solely heat demand or 2) to meet both heat and electricity demands (Regulation strategy 1 and 2).

Question 2.3.1: What is 1) the excess electricity production, 2) the primary energy supply and 3) the CO2 emission of the system if the CHP units are regulated solely according to the heat demand?

Question 2.3.2: What is the answer if the CHP units are regulated according to both the heat and the electricity demand?

How to do exercise 2.3: Use input data file from exercise 2.2.

Step 1: Add wind power input

Choose "Supply" and "Variable Renewable Electricity" and the following window will open:

Place the cursor in the input squares and type in the various input values and choose distribution file "DK 2013 Wind offshore"

Step 2: Calculate and see result in print output (or clipboard)

Input Exercise 2.txt																														
Fixed dem Electric he	and ating + H	49,0 P 0,0	00 00	Fixed i Transp	mp/exp.	0,0	IO IO			CHP Heat F		MW 1350	-e MJ/ 0 1646	s ele 3 0,4)	c. The 1 0,5	er CO i0 3,0		CEEP Minimu Stabilis	regulatio um Stabi sation sh	on lisation are of (Techn 00 share CHP	ical regu 10000001 0,01 0,01	lation no D D	o. 1	Fuel Pr Elec. S	rice leve Ca Storage	el: npacities MW-e	Storag	ge Efficie	Ther.
District he Solar The Industrial	ating dem rmal CHP (CSI	and	нР	1,59 0,00 0,00	10,00 0,00 0,00	0 18	5,84 0,00 2,41	27,4: 0,0 2,4	1	Group CHP Heat F Boiler	ump	C) 2439) (5000	0,4	1 0,5	i0 3,0	0	Minimu Heat P Maxim	um PP ump ma um impo	ximum xrt/expo	share rt	1,0	D MW		Charge Dischar Electrol	2: irge 2: ilysers:	(D D	0 0,80 0,90 0 0,80	0,00
										Heats	torage:	gr.2: 1	0 GWI	h (gr.3:			Additio	n factor		0,00				CAES f	fuel ratio	0:	-,	0	
Wave Pov River Hyd Hydro Pov	ver ro ver		0 MW 0 MW 0 MW	11	0 T/ 0 T/ 0 T/	Wh/yea Wh/yea Wh/yea	r 0,0 r 0,0	0 satio	n	Electri Gr.1: Gr.2:			0,00 0,00	Wast 0,00	te (TW 0 0		cent	Averag Gas St Syngas	ge Marke torage s capacit	et Price ty	227 0 0	DKK/M GWh MW		MIVV	Transpo Househ Industry	ort hold y	0,00 0,01 3,37	69,20 4,20 26,92	0,00 4,66 18,19	0,00 4,55 5,18
Outp	ut	١	NAF	RNII	NG!	l: (1) Cr	itica	ΙE	ces	s;																			
				Distr	rict Heat	ing														Electric	city								Exch	ange
	Demand				Produc	tion							Consur	nption					Pr	oductio	n				Ba	alance			Paume	ont
					OUE																					_	0555			
																													Million	DKK
						_	_					_	_	_	_	_				_										
		_				_	_		_			_	_	_	_	_	_		_	_					_			- 1	_	
						_	_					_	_	_	_	_	_								_				_	
		_				_	_	_				_	_	_	_	_	_											- 1	_	
		_					_	•	_			_				_	_		_	_					_				_	
										_		_		-	_	_		001									1		_	
	2139	ō	274	124	1740	ō	o	o	ō	Ō		ō	ō	ō	Ō	o	ō	1451	ō	ō	197	1427	2181	100	ō	4	4	0	0	
October		0		168	2454	0	0	_	0			0	0	0	0	0	0	2152	0	0	197		1197		0				0	
												-			•															
December																													U	70
														_		_														
												_	_	_	_	_				_										
																												_		
				1,59	22,83	0,00	0,00	0,50	0,00						0,00				0,00	0,00	1,/3	18,81	_			_			_	
FUEL BAL				3 Boi	iler2 Bo	oiler3	PP	Geo/N	u. Hydr						Wind				ro Sol	ar.Th. T	ransp.	househ.						- 1		
	-	-	26,31			,08 :	30,85	-	-					-	-	-	-	-		-	-		3,37					20		
	1,77	-	-				-	-	-					-	-	-	-	-		- 69	,20									
	-	19,56	-				-	-	-					-	-	-	-	-		-	-									
				U,U	. U	,08			-					-	4 15		11.34	-			-	+,00	0,18							
		_	- :			_	-	-	- :					_	.,10						_									
Biofuel	-	-	-		-	-	-	-	-					-	-	-	-	-			-	-	-	0,00	0	00,0	0,00			00
Manhamato	CS -				_	_																	_	0.00		.00	0.00	1 (0,00 0.	.00
Nuclear/C	-																							0,00		,00	0,00	ш.	-,	

Read the results of question 2.3.1:

The Primary energy supply has been reduced from 242.58 to 230.80 TWh/year.

The CO2 emission has been reduced from 64.57 to 56.67 Mt/year.

Critical Excess Electricity Production (CEEP) = 0.91 TWh/year

Change the technical regulation strategy to 2 by activating the Change technical regulation strategy button.

Step 4: Calculate and see result in print output (or clipboard)

Activate the "Run (print)" button and get the following print:

Input	t	Ex	ercis	e2.t	κt															The	e Er	erg	yPL/	١N	mod	del 1	6.2	2	1
Fixed den Electric h Electric co	eating + H poling	49,0 IP 0,0	00 00 00	Flexible d Fixed imp Transport Total	o/exp. tation	0,00 0,00 0,00 49,00			Group CHP Heat I			pacities e MJ/: 1646 0 5000	s ele 3 0,4)		er CO 50 3,0		Minimu Stabilis	tion Str regulati im Stab sation sl im CHP	on ilisation hare of	00 share CHP	ical regu 1000000 0,0 0,0 45	10		Elec. S Charg	Storage e 1:	apacities MW-	e GW	0 0,80	Th
District he Solar The Industrial	rmal CHP (CS	ting demand 1.59 10.00 15.84 HP (CSHP) 0.00 0.00 0.00 2.41 Her solar and CSHP 1.59 10.00 13.43 2000 MW 1.15 TWhyear 0.00 ind 3000 MW 1.134 TWhyear 0.00 er 0 MW 0 TWhyear 0.00						13 10 11 12	Group CHP Heat I Boiler Cond		2000 0 9000	5000)	0,9	3,0	0	Minimu Heat P Maximi Distr. N	ım PP ump ma um imp	aximum ort/expo	share ort Hour_no	1,0	0 MW 0 MW xt		Charg Discha Electro Rockb	arge 1: e 2: arge 2: olysers: ed Stor fuel rat	age:		0,90 0 0,80 0,90 0 0,80 0 1,00))) 0
Wind Offshore Wave Por River Hyd Hydro Po	wer Iro	1							Fixed	torage: Boiler: icity pro	gr.2: 0,	0 GWH 0 Per 0 CSHP 0,00 0,00	Wast 0,00	gr.3: (te (TW)	10 GW 0,0 Per 'h/year)	- 1	Depen Averag Gas St	cation for dency for Marketon orage so capaci	actor et Price	2,00 0,00		/IWh pr. /IWh	MW	(TWh/ Transp House Indust	year) oort hold	0,00 0,01	Oil 69,20 4,20 26,92		0,0 4,5 5,1
Geotherm	_	r	0 MW		0 TWh	/year			Gr.3:			1,73					Biogas	max to	grid	0	MW			Variou	IS	0,00	0,00	0,00	0,0
Outp	ut			District	Uzze														Florida									Fush	_
_	Demand Distr.		Waste+						Ba-	Elec.	Flex.&	Consun	nption Elec-		Hydro	Tur-		P Hy-	Electri roduction Geo-		_		Stab-	В	lalance			Payme	
	heating MW	Solar MW	CSHP		HP H	P EL		EH MW	lance MW		d Transp.		rolyser MW	EH MW	Pump	bine MW	RES MW		ermal	CSHP		PP MW		lmp MW	Exp MW	CEEP MW	EEP MW	Imp Million	DK
anuary ebruary farch	4674 4768 4147	0	274 274 274	276 3	800 756 353	0	0 530 0 458 0 307	1 1 0	-3 3 -27	6508 6329 6059	0	0	0	1 1 0	0	0	2121 1778 2034	0	0	197 197 197	2952 3080 2749	1238 1275 1079	100 100 100	0	0	0	0		
April May June	3438 2823 1594	0	274 274 274	164 2	940 373 220	0	0 22 0 4	2 7 8	0 1 -1	5468 5047 5035	0	0	0	2 7 8	0	0	1583 1410 1548	0	0	197 197 197	2410 1946 1001	1280 1501 2297	100 100 100	0	0	0	0		
July July August September	1594 1594	0	274 274 274 274	92 1: 92 1:	227 227 227 740	0	0 0	0	0	4797 5037 5252	0	0	0	0	0	0	994 1408 1451	0	0	197 197 197	1006 1006 1427	2600 2427 2178	100 100 100	0	0	0	0	0	
October November December	2903 3630 4221	0	274 274 274	168 24 210 25	438 980 959	0	0 13 0 150 0 710	2 12 17	7 3 17	5549 5909 5978	0	0	0	2 12 17	0	0	2152 2128 2547	0	0	197 197 197	1999 2444 2426	1202 1153 825	100 100 100	0	0	0	0	0	
Average Maximum	3123 7744	0	274 274	181 24 449 4	480 085	0	0 183 0 4791	4 1012	0 2909	5578 8861	0	0	0	1012	0	0	1764 4868	0	0	197 197	2034 3350	1588 5295	100 100	0	0	0	0	Averag	
Minimum TWh/year	1468 27,43	0,00	274	85 1,59 21	,79 O	,00 0,		0,04	-1812	3317 49,00		0,00	0,00	0,04	0,00	0,00	30 15,49	0,00	0,00	1,73		13,95	100	0,00	,00	0,00	0,00		_
FUEL BA	LANCE (T	Wh/yea		Boiler	2 Boile	r3 PP	Geo/h	lu. Hydr			AES Bio(Con- Ek		Wind	PV an	d Wind Wave		ro So	lar.Th.	Transp.	househ	Industr	•	lmp lr	/Ello Co	orrected	4	2 emissio Fotal Ne	
Coal Oil N.Gas Biomass	1,77	19,27	24,30	0,09 0,09 0,09 0,09	0,36 0,36 0,36 0,36	-	- - -	-		- - -			-	-	-	-	-		- - 6	9,20	0,01 4,20 4,66 4,55	3,37 26,92 18,19 5,18	59,13 102,53 42,57 10,18	(0,00 0,00 0,00 0,00	59,13 102,53 42,57 10,18	2	0,00 0,	,31 ,69 ,00
Renewab H2 etc. Biofuel Nuclear/C	:			-		-	-	-						4,15 - -	-	11,34			- - -		:	:	15,49 0,00 0,00	- (0,00 0,00 0,00 0,00	15,49 0,00 0,00 0,00		0,00 0, 0,00 0,	00, 00, 00,

Read the results of question 2.3.2:

The Primary energy supply has been reduced from 230.80 to 229.90 TWh/year.

The CO2 emission has been reduced from 56.67 to 56.23 Mt/year.

Critical Excess Electricity Production (CEEP) is reduced from 0.91 to 0 TWh/year

Exercise 2.4: Implement electricity-saving measures

Decrease the electricity demand by 30% from 49 to 34.3 TWh/year.

Question 2.4.1: What is 1) the excess electricity production, 2) the primary energy supply and 3) the CO2 emission of the system if the CHP units are regulated solely according to the heat demand?

Question 2.4.2: What is the answer if the CHP units are regulated according to both the heat and the electricity demands?

Step 2: Calculate and see result in print output (or clipboard)

Inpu	t	Ex	ercis	se2	.txt																The	e En	ergy	/PL/	۱N	mod	lel 1	6.2	2	A
Fixed der Electric h Electric c District h District h Solar The Industrial	eating + H ooling eating (TW eating dem	34,3 P 0,0 0,0 /h/year) nand HP)	30 00 00	Fixed	Gr. 10,0	o. 0,0 n 0,0 34,3 2 0 00 1:	10	Sum 27,4 0,0 2,4 25,0	0	Group CHP Heat F Boiler Group CHP Heat F Boiler Conde	Pump		0 5000 2439 0 5000	0,41 0,41 0,45	0,5i 0,9i 0,5i	7 COI 0 3,0 0 3,0	D	CEEP Minimo Stabilio Minimo Minimo Heat F Maxim Distr. I	regulati um Stab sation sl um CHF um PP ump ma um imp	on illisation hare of (gr 3 los aximum ort/expo	share CHP ad share	0000000 0,0 0,0 45 1,0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Elec. S Charge Discha Charge Discha Electro Rockb	Ca Storage e 1: arge 1: e 2: arge 2:	MW-	s Storage GWI 0 0 0 0	0 0,80 0,90 0 0,80 0,90 0 0,80 0 1,00	Ther.
Wind Offshore Wave Po River Hydro Po Geothern	wer dro wer nal/Nuclea	300 r	O MW O MW O MW O MW	1	1,34 T 0 T 0 T 0 T	TWh/yea TWh/yea TWh/yea TWh/yea TWh/yea TWh/yea	ar 0,0 ar 0,0 ar 0,0 ar	00 stab 00 satio 00 shar	ili- on e	Electri Gr.1: Gr.2: Gr.3:	icity prod	gr.2: 0,	0 GWh 0 Per or CSHP 0,00 0,00 1,73	ent gr	r.3: 0 e (TWI	10 GW),0 Per h/year)		Depen Averag Gas S Synga	ication f dency fa ge Mark torage s capac s max to	actor et Price ity	2,00 0,00 227 0 0	DKK/N DKK/N GWh MW MW	IWh pr. I	vivv	(TWh/ Transp House Industr Variou	ort hold y	0,00 0,01 3,37 0,00	Oil 1 69,20 4,20 26,92 0,00	0,00 4,66 18,19 0,00	0,00 4,55 5,18 0,00
				Dist	trict He	ating	_													Electri	city								Exch	nange
_	Demand				Produ	_							Consum	ption					Р	roductio	_				В	alance				
	Distr. heating MW	Solar MW	Waste+ CSHP MW	DHP MW	CHP MW	HP MW	ELT MW	Boiler MW	EH MW	Ba- lance MW	Elec. demand MW	Flex.& Transp. MW	HP tro		EH MW	Hydro Pump MW	Tur- bine MW	RES MW	Hy- dro th MW	Geo- nermal MW	Waste CSHP MW			Stab- Load %	lmp MW	Exp MW	CEEP MW	EEP MW	Payme Imp Million	Exp
January February March April May June July August September October November December Average Maximum Minimum TWhiyear	4674 4768 4147 3438 2823 1594 1594 1594 1239 2903 3630 4221 3123 7744 1468	0 0 0 0 0 0 0 0	274 274 274 274 274 274 274 274 274 274	271 276 240 199 164 92 92 124 168 210 245 181 449 85	3881 3883 3568 2982 2368 1251 1227 1221 1743 2437 3132 3567 2602 4085 1084	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	248 335 65 3 0 0 0 0 0 13 135 66 2936 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 -21 17 -24 0 6 -3 24 0 0 0 2319 -1918	4556 4430 4241 3827 3533 3524 3358 3676 3884 4136 4185 3905 6203 2322 34.30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2121 1778 2034 1583 1410 1548 994 1406 1451 2152 2128 2547 1764 4868 30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	197 197 197 197 197 197 197 197 197 197	3182 3184 2926 2446 1942 1026 1006 1001 1429 1998 2569 2925 2133 3350 889	207 155 143 69 218 919 1211 1035 726 183 163 105 429 3002 0	100 100 100 100 100 100 100 100 100 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1152 884 1058 467 234 165 50 114 127 646 919 1589 618 4911 0	1152 884 1058 467 234 165 50 114 127 646 919 1589 618 4911 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		176 113 172 73 37 24 18 22 111 145 268 1ge price K/MWh) 214
FUEL BA	LANCE (T	Wh/yea		3 Bo	oiler2 E	3oiler3	PP	Geo/N	u. Hydr				Con- Ele sion Fue		Vind	PV and	d Wind Wave		ro So	lar.Th. T	ransp.	househ.	Industry			/Exp Co np/Exp			2 emissio otal Ne	
Coal Oil N.Gas Biomass Renewab H2 etc. Biofuel Nuclear/C	-	19,47 - - - - - - 19,47	26,23 - - - - - - - - - -	0, 0, 0,	,07 ,07 ,07 - -	0,09 0,09 0,09 0,09 - - - -	8,37 - - - - - - - - - - - - -	-	-		-			· ·	4,15 - - - 4,15		11,34	-		- 69 - - - -	20	0,01 4,20 4,66 4,55 - - -	3,37 26,92 18,19 5,18 - - - - 53,66	38,14 102,25 42,48 9,89 15,49 0,00 0,00 0,00	0	0,00 0,00 0,00 0,00 0,00 0,00	26,08 102,25 42,48 9,89 15,49 0,00 0,00 0,00	2	7,24 27 3,67 8 0,00 0 0,00 0 0,00 0 0,00 0	,92 ,24 ,67 ,00 ,00 ,00 ,00 ,00

Read the results of question 2.4.1:

The Primary energy supply has been reduced from 229.90 to 208.25 TWh/year.

The CO2 emission has been reduced from 56.23 to 48.96 Mt/year.

Critical Excess Electricity Production (CEEP) is raised from 0 to 5.43 TWh/year

Step 3: Change regulation strategy, calculate and read results.

Repeat steps 1 and 2.

Change the technical regulation strategy to 2 in the simulation window.

Activate the "Run (print)" button and read the results of question 2.4.2 on the print:

The Primary energy supply has been reduced from 208.25 to 202.89 TWh/year.

The CO2 emission has been reduced from 48.96 to 46.70 Mt/year.

Critical Excess Electricity Production (CEEP) is reduced from 5.43 to 0 TWh/year

Exercise 2.5: Add heat pump and heat storage capacity to CHP plants

Add heat storage capacity of 40 GWh to gr 2 together with a 300 MW heat pump with a COP=3.

Question 2.5.1: What is 1) the excess electricity production, 2) the primary energy supply and 3) the CO2 emission of the system if the CHP units are regulated according to both the heat and the electricity demands?

Step 2: Calculate and see result in print output (or clipboard)

Activate the button and look at the following print output:

Electric coo	and ating + H oling	34,3 P 0,0 0,0	30 00	Fixed i	le dema imp/exp portation	0,0	00			Group CHP Heat F Boiler				l/s ele 6 0,4 0		er CO 50 3,0		CEEP Minimi Stabili	ation Str regulati um Stab sation sl um CHP	on ilisation nare of (00 share CHP	cal regu 000000 0,0 0,0 45	0	E		Ca orage	MW-			ncies The
District hear District hear Solar Them Industrial Ci Demand aft	iting dem mal HP (CSI	and HP) and CS	НР	Gr.1 1,59 0,00 0,00 1,59	Gr. 10,0 0,0 0,0	00 1 00 00 1	9r.3 5,84 0,00 2,41 3,43	27,4 0,0 2,4 25,0	1	Group CHP Heat F Boiler Conde	ump	2000 300 9000 gr.2: 1	243 90 500	9 0,4 0 0 0 0,4	1 0,5 0,9 5	i0 3,0	ᆣ	Minimi Heat F Maxim Distr. I Additio	um PP ump ma um imp Name : on factor	ximum ort/expo	share rt our_no 0,00	1,0	0 MW 0 MW	E		2: ge 2:	age:	0 0 0 0 0 0 0 0	0,90 0,80 1,00	0,0
Wind Offshore W Wave Powe River Hydro Hydro Powe Geothermal	er o er I/Nuclea	300	00 MW 00 MW 0 MW 0 MW 0 MW	1	1,34 T 0 T 0 T 0 T	TWh/yea TWh/yea TWh/yea TWh/yea TWh/yea	ar 0,0 ar 0,0 ar 0,0 ar	0 stabi 0 satio 0 shan	n e	Electri Gr.1: Gr.2: Gr.3:	Boiler: city prod	gr.2: 0.		cent (Wast 0 0,0	gr.3: (te (TW 0 0	0,0 Per		Depen Averag Gas S Synga	lication f ndency fa ge Marke torage is capaci s max to	ector et Price ty	2,00 0,00 227 0 0	DKK/N DKK/N GWh MW MW	fWh pr. I	7 H	ranspo louseh dustry arious	ort old	0,00 0,01 3,37 0,00	69,20 4,20	0,00 4,66 18,19	mas: 0,00 4,55 5,18 0,00
Outpu	ut		WAF			•) Cr	itica	IEx	ces	s;																			
	Demand			Dist	Produ								Consu	mption					P	Electric					Ra	lance		-+	Excha	nge
D	Distr. neating MW	Solar MW	Waste+ CSHP MW	DHP MW	CHP	HP MW	ELT MW	Boiler MW	EH MW	Ba- lance MW	Elec. demand	Flex.& Transp. MW		Elec- trolyser MW	EH MW	Hydro Pump MW	Tur- bine MW	RES MW	Ну-	Geo- ermal MW	Waste CSHP MW		PP MW			Exp MW	CEEP	EEP MW	Payme Imp Million I	Ex
anuary	4674	0	274	271	2690	559	0	849	31	0	4556	0	186	0	31	0	0	2121	0	0	197	2206	249	100	0	0	0	0	0	Т
ebruary March	4768 4147	0	274 274	276 240	2998 2477	504 501	0	699 632	16 36	-13	4430 4241	0	168 167	0	16 36	0	0	1778 2034	0	0	197 197	2458 2031	182 183	100 100	0	0	0	0	0	
pril	3438	0	274	199	2542	287	0	126	28	-18	3827	0	96	0	28	0	0	1583	0	0	197	2084	87	100	0	0	0	0	0	
fay une	2823 1594	0	274 274	164 92	2228 1123	105 95	0	26 4	29 39	-4 -33	3533 3524	0	35 32	0	29 39	0	0	1410 1548	0	0	197 197	1827 920	162 935	100 100	0	5	0 5	0	0	
uly	1594	o	274	92	1186	29	o	ō	13	-55	3358	0	10	ō	13	0	0	994	0	ŏ	197	972	1217	100	0	0	0	0	Ö	
ugust	1594	0	274	92	1104	80	0	11	17	16	3526	0	27	0	17	0	0	1406	0	0	197	905	1061	100	0	0	0	0	0	
eptember	2139	0	274	124	1659	53	0	20	21	-13	3676	0	18	0	21	0	0	1451	0	0	197	1360	707	100	0	0	0	0	0	
October Jovember	2903 3630	0	274 274	168 210	1795 2243	329 442	0	231 387	42 75	64 -2	3884 4136	0	110 147	0	42 75	0	0	2152 2128	0	0	197 197	1472 1839	215 195	100 100	0	0	0	0	0	
ecember	4221	0	274	245	1893	616	0	1047	144	2	4185	0	205	0	144	0	0	2547	0	0	197	1552	238	100	0	0	0	0	0	
verage	3123	0	274	181	1990	300	0	336	41	0	3905	0	100	0	41	0	0	1764	0	0	197	1632	454	100	0	0	0	0	Averag	a n
Maximum	7744	0	274	449	4085	900	0	5283	1930	4363	6203	0	300	0	1930	0	0	4868	0	0	197	3350	3002	100	0	725	725	0	(DKK	
finimum	1468	0	274	85	0	0	0	0	0	-1991	2322	0	0	0	0	0	0	30	0	0	197	0	0	100	0		0	0	222	
Wh/year	27,43	0,00	2,41	1,59	17,48	2,63	0,00	2,95	0,36	0,00	34,30	0,00	0,88	0,00	0,36	0,00	0,00	15,49	0,00	0,00	1,73	14,34	3,98		0,00	00,00	0,00	0,00	0	_
FUEL BALA	ANCE (T	Wh/vea	r):							Was	ste/ C/	AES Bio	Con- F	lectro-		PV and	d Wind	off					Industry	,	Imp/E	x Co	rrected	0.02	emissio	(M
	DHP	CHP2		3 Bo	iler2 E	Boiler3	PP	Geo/N	u. Hydro						Wind	CSP	Wave		lro So	ar.Th. T	ransp.	househ				р/Ехр	Mot		tal Ne	
Coal	-	-	18,85	0.	44	0,38	8,86	-	-	-				-	-	-	-				-	0,01	3,37	31,91	-0,	01	31,90	10	,91 10,1	1
Oil	1,77	-	-	0.	44	0,38	-	-	-	-				-	-	-	-			- 69	.20	4,20	26,92	102,91	0.	00	102,91	27	41 27	1
N.Gas	-	16,11	-			0,38	-	-	-	-				-	-	-	-			-	-	4,66	18,19	39,78		00	39,78		12 8,	
Biomass	-	-	-	0,	44	0,38	-	-	-	-				-	4.15	-	-	-		-	-	4,55	5,18	10,55		00	10,55		00,00	
Renewable H2 etc			-		-				-						4,15		11,34							15,49		00 00	15,49		00, 00, 00 00.	
Biofuel					_	-	-	-	-					-	-	-					_	-		0,00		00	0,00		,00 0,0	
Nuclear/CC	s -	-	-		-	-	-	-	-					-	-	-	-			-	-	-		0.00		00	0,00		00 0	0
Total	1,77	16,11	18,85	1	76	1,52	8,86	-	-					-	4,15	-	11,34			- 69	,20	13,42	53,63	200,64	-0.	01 2	200,63	46	,45 46,4	4

Read the results of question 2.5.1:

The Primary energy supply has been reduced from 202.89 to 200.64 TWh/year.

The CO2 emission has been reduced from 46.70 to 46.45 Mt/year.

Critical Excess Electricity Production (CEEP) is still 0 TWh/year

REMEMBER to save exercise 2. You will need it when doing exercise 3.