Guideline to EnergyPLAN Exercise 2: Make Simple Energy System Analyses. In exercise 2, you are asked to do a couple of energy system improvements of the energy system of exercise 1. Through the exercise and the guideline, you learn step by step how to analyse changes to the energy system. Exercise 2 continues with the system defined in exercise 1, which is: - Electricity demand of 49 TWh/year and "DK 2013 electricity demand" - Condensing power plant: 9000 MW coal –fired - 2000 MW wind power using "DK 2013 Wind onshore" - Annual district heating demand of 39.18 TWh (distribution "hour distr heat") - Fuel demand for individual house heating of 23.07 TWh divided into 0.01 coal, 6.72 oil, 9.05 natural gas and 7.29 biomass. - Industrial fuel demand of 53.66 TWh divided into 3.37 coal, 26.92 oil, 18.19 natural gas and 5.18 biomass (including fuel for district heating and electricity production). - Industrial district heating production of 1.73 TWh and an electricity production of 2.41 TWh. Use the hour distribution file "const". - Fuel demand for transportation: 13.25 TWh Jet Petrol, 27.50 TWh Diesel and 28.45 TWh Petrol. The system has a primary energy supply of 286.76 TWh/year and CO2 emissions of 77.77 Mt. ### **Exercise 2.1: Energy conservation in house heating** Open the EnergyPLAN model. Load the data of exercise 1. Assuming, that the district heating demand of 39.18 TWh/year is composed of 20% grid losses, 20% hot water and 60% space heating, implement energy conservation in house heating equal to 50% of the space heating demand. Do the same for the individual house heating demand of 19.70 TWh/year assuming that the demand is composed of 25% hot water and 75% space heating. Consequently, the annual district heating demand will decrease by 50% of 60% from 39.18 to 27.43 TWh/year. And the heat demand for individual houses will decrease by 50% of 75% from 19.70 to 12.31 TWh/year. Note that such energy conservation measures change the duration curves and, consequently, the existing hour distribution curves must be be replaced by "VpDkFjv50.txt" and Hour_indv-heat-50procent.txt. Question 2.1.1: What is the peak hour district heating demand before and after implementing the energy conservation? Question 2.1.2: What are the primary energy supply and the CO2 emission of the system after implementing such energy conservation measures? #### How to do exercise 2.1: Step 1: Open the EnergyPLAN model. You will see the following front page (version 16.21): Look at the top bar: The EnergyPLAN model is loaded with "Startdata" Choose "Exercise 1.txt" and activate the Open/Åbn button. Look at the top bar: The EnergyPLAN model is loaded with "Exercise 1" data. Step 3: Save Data as Exercise 2 data Choose a name and type in the name, e.g.: "Execise2" and activate the Save/Gem button. Look at the top left-hand corner: The EnergyPLAN model is loaded with "Exercise2" data. Step 4: Read the peak hour district heating demand BEFORE energy conservation. Activate the button and the following window will open: Read the result: 7932 MW Step 5: Change district heating demand and hour distribution file. Open the "Demand > Heating" window: Place the cursor in the electricity input square and type in 27.43. Look at the Demand > Heating input window: The model is loaded with "Hour-distr-heat.txt" distribution data. Activate the Change button and the following window will open: Choose "VpDkFjv50" and activate the Open/Åbn button. Look at the Demand > Heating input window: The model is loaded with "VpDkFjv50" distribution data. Change input fuel consumption to 62.5% of previous value. And change distribution file to "Hour indv-heat-50procent.txt" and the window will look like this: Activate the B Save button. | Inpu | t | Ex | erci | se2 | .txt | | | | | | | | | | | | | | | | The | e Er | ergy | /PLA | NI | mod | del 1 | 6.2 | A | |-------------------------------------|---|-------------|-----------------------|--|----------------------------------|----------------------------|--------------------------------------|-----------------------------------|---------|-------------------------|---------------------------------|---------------|-----------------------|-------------------------------|----------|-----------------------------|----------------|---------------------------------------|-------------------------------|--|---------------------|------------------------------------|----------------------|-------------------|---------------------------|------------------|----------------------|-----------------------|--| | Fixed de | eating + H | 49
IP 0 | | Fixed | le dema
imp/exp
portation | 0,0 | 10
10 | | | Group
CHP
Heat I | Pump | Ca
MW
0 |) | l/s ele
0 0,4
0 | 0 0,5 | er CO
50
3,0 | | CEEP | regulat
um Stal | rategy:
ion
bilisation
share of | 00
share | ical regu
0000000
0,0
0,0 | 0 | | Elec. S | C:
Storage | MW- | Stora | | | District h
Solar Th
Industria | eating (TW
eating den
ermal
I CHP (CS
after solar | nand
HP) | | Gr.1
27,43
0,00
2,41
25,02 | Gr.2
0,0
0,0
0,0
0,0 | D (| 6r.3
0,00
0,00
0,00
0,00 | Sum
27,4
0,0
2,4
25,0 | 0 | | o 3:
Pump
ensing | 9000 |) | 0
0 0,4
0
0
0 0,4 | 0,9
5 | 50
3,0
90 | | Minimu
Heat F
Maxim
Distr. I | um PP
ump m
um imp | | share | 1,0 | 0 MW | - 1 | Rockb | rge 1:
e 2: | age: | 0 | 0 0,80
0,90
0 0,80
0,90
0 0,80 0
0 1,00 | | Wind
Photo Vo
Wave Po | | 20 | 00 MW
0 MW
0 MW | 1 | 0 T | Wh/yea
Wh/yea
Wh/yea | r 0,0 | 0 stab | ili- | Fixed | torage:
Boiler:
icity pro | gr.2: 0 | 0 GW
0 Per
CSHP | cent | | 0 GW
0,0 Per
/h/vear) | | Depen | ication
dency f
ge Mark | | 2,00
0,00
227 | DKK/N | fWh pr. I | MIVV . | TWh/ | | Coal
0,00 | Oil 1 | Ngas Bioma | | River Hy
Hydro Po
Geothern | | r | 0 MV
0 MV | 1 | 0 T | Wh/yea
Wh/yea
Wh/yea | ır | 0 shar | e | Gr.1:
Gr.2:
Gr.3: | | | 1,7
0,0
0,0 | 0,0 | 0 | | | | torage
s capac
s max to | | 0
0
0 | GWh
MW
MW | | 1 | House
ndustr
/ariou | у | 0,01
3,37
0,00 | 4,20
26,92
0,00 | 4,66 4,5
18,19 5,1
0,00 0,0 | | Outp | out | Dist | trict Hea | ting | | | | | | | | | | | | | | Electri | icity | | | | | | | | Exchang | | - | Demand
Distr. | 0-1 | Waste | | Produc | | | D-11- | <u></u> | Ba- | Elec. | Flex.& | | Elec- | F.1. | Hydro | Tur- | DE0 | Ну- | Geo- | Waste | | | Stab- | | alance | CEEP | EEP | Payment
Imp E | | | heating
MW | Solar
MW | MW | MW | MW | MW | MW | Boiler
MW | MW | MW | MW | MW MW | MW | trolyser
MW | MW | Pump
MW | bine
MW | RES
MW | dro t | MW | MW | MW | PP
MW | | mp
MW | Exp
MW | MW | MW | Million DKI | | January
February | 4674
4768 | 0 | 274
274 | 4399
4494 | 0 | 0 | 0 | 0 | 0 | 0 | 6508
6329 | 0 | 0 | 0 | 0 | 0 | 0 | 629
600 | 0 | 0 | 197
197 | 0 | 5682
5532 | 100
100 | 0 | 0 | 0 | 0 | 0 | | March
April | 4147
3438 | 0 | 274
274 | 3873
3164 | 0 | 0 | 0 | 0 | 0 | 0 | 6059
5468 | 0 | 0 | 0 | 0 | 0 | 0 | 475
445 | 0 | 0 | 197
197 | 0 | 5387
4826 | 100
100 | 0 | 0 | 0 | 0 | 0 | | May
June | 2823
1594 | 0 | 274
274 | 2548
1319 | 0 | 0 | 0 | 0 | 0 | 0 | 5047
5035 | 0 | 0 | 0 | 0 | 0 | 0 | 438
379 | 0 | 0 | 197
197 | 0 | 4412
4459 | 100
100 | 0 | 0 | 0 | 0 | 0 | | July
August | 1594
1594 | 0 | 274
274 | 1319
1319 | 0 | 0 | 0 | 0 | 0 | 0 | 4797
5037 | 0 | 0 | 0 | 0 | 0 | 0 | 288
331 | 0 | 0 | 197
197 | 0 | 4312
4509 | 100
100 | 0 | 0 | 0 | 0 | 0 | | Septembe | r 2139 | 0 | 274 | 1864 | 0 | Ō | 0 | 0 | 0 | 0 | 5252 | 0 | 0 | 0 | 0 | 0 | 0 | 424 | 0 | 0 | 197 | 0 | 4631 | 100 | 0 | 0 | 0 | 0 | 0 | | October
November
December | | 0 | 274
274
274 | 2629
3356
3947 | 0 | 0 | 0 | 0 | 0 | 0 | 5549
5909
5978 | 0 | 0 | 0 | 0 | 0 | 0 | 603
641 | 0 | 0 | 197
197
197 | 0 | 4930
5110
5141 | 100
100
100 | 0 | 0 | 0 | 0 | 0 | | Average | 3123 | 0 | 274 | 2848 | 0 | 0 | 0 | 0 | 0 | 0 | 5578 | 0 | 0 | 0 | 0 | 0 | 0 | 472 | 0 | 0 | 197 | 0 | 4909 | 100 | 0 | 0 | 0 | 0 | Average p | | Maximum
Minimum | 7744
1468 | 0 | 274
274 | 7470
1193 | 0 | 0 | 0 | 0 | 0 | 0 | 8861
3317 | 0 | 0 | 0 | 0 | 0 | 0 | 1980
0 | 0 | 0 | 197
197 | 0 | 8480
1960 | 100
100 | 0 | 0 | 0 | 0 | (DKK/M | | TWh/year | 27,43 | 0,00 | 2,41 | 25,02 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 49,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 4,15 | 0,00 | 0,00 | 1,73 | 0,00 | 43,12 | | 0,00 | 0,00 | 0,00 | 0,00 | 0 | | FUEL BA | LANCE (T
DHP | Wh/ye | | P3 Bo | iler2 B | oiler3 | PP | Geo/N | u. Hydr | | | | Con- E
sion F | | Wind | PV an
CSP | d Wind
Wave | | ro So | olar.Th. | Transp. | househ | Industry
Various | , | | Exp Co
np/Exp | Net
Net | - 1 | 2 emission (Notal Net | | Coal | 27.80 | - | - | | - | - 1 | 95,83 | - | - | | - | | | - | - | - | - | - | | - 8 | 9.20 | 0,01
4,20 | 3,37
26,92 | 99,21
128,12 | 1 - | 0,00 | 99,21
128,12 | 1 - | 3,93 33,93
4,13 34,13 | | N.Gas | | - | | | - | - | - | - | | | - | - : | - | - | - | - | - | - | | - 0 | - | 4,66 | 18,19 | 22,85 | | 00,0 | 22,85 | ' | 4,66 4,66 | | Biomass
Renewal | ole - | - | | | - | - | - | | - | | - | - : | | - | 4,15 | | - | | | - | - | 4,55 | 5,18 | 9,73
4,15 | | 0.00 | 9,73
4,15 | | 0,00 0,00 | | H2 etc. | - | - | | | - | - | - | - | - | | - | | - | - | - | - | - | - | | - | - | - | ٠, | 0,00 | 0 | 0,00 | 0,00 | | 0,00 0,00 | | Biofuel
Nuclear/ | ccs - | | | | - | | 1 | - | | | - | - : | | - | - | - | - | | | - | - | - | 1
 0,00 | | 00,0 | 0,00 | | 0,00 0,00 | | Total | 27.80 | | | | | _ | 95.83 | | | | _ | | | | 4.15 | | | | | | 9.20 | 13.42 | 3.66 | 264.05 | ١, | 0.00 | 264 05 | - | 2.72 | Read the results of question 1.2.2: The Primary energy supply has been reduced from 286.76 to 264.05 TWh/year. The CO2 emission has been reduced from 77.77 to 72.72 Mt/year. ### Exercise 2.2: Replace district heating boilers by CHP Replace the 27.43 TWh of district heating boilers by: - 1.59 TWh of district heating boilers - 10.00 TWh of small-scale CHP: 1350 MW, eff-th = 50%, eff-el = 41% on natural gas - 15.84 TWh of large-scale CHP: 2000 MW, eff-th = 50%, eff-el = 41% on coal. - Add boiler capacities of 5000 MJ/s in gr. 2 and gr. 3 - Add thermal storage capacity of 10 GWh in gr. 2 and gr. 3. - Identify a 450 MW minimum production on the large-scale CHP units. - Move 1.73 TWh of industrial excess heat production (2.41 of electricity) to gr. 3 - Chose simulation strategy "balancing both heat and electricity demands" Question 2.2.1: What are the primary energy supply and the CO2 emission of the system? Chose "Balancing and Storage" and "Thermal" Liquid and Gas Fuels -- CO2 ⊕ Balancing and Storage *) Replace only Oil - will be adjusted if the Oil demand is not big enough Reg1 Allow for import/export Place the cursor in the input squares and type in the various input values. #### Step 2: Define a minimum operation on large-scale CHP Chose "Balancing and Storage" and "Thermal" Place the cursor in the input square and type in the 450 MW value. Step 3: Define regulations strategy Chose "Simulation" Chose simulation strategy "2 Balancing both heat and electricity demands" Step 4: Calculate and see result in print output (or clipboard) | Input | t | Ex | ercis | se2 | .txt | | | | | | | | | | | | | | | | The | e En | ergy | /PLA | N | mod | lel 1 | 6.2 | | 1 | |---|--------------------------------|-------------------|------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|---------|---|--------------------|---------------------|----------------------|-----------------|------|------------------|--------------|---------------------------------------|--------------------------------|--------------------|-------------------------|--|-------------------|--------------|-----------------------------------|---|--------------|--------------------------------|--|------------------------------| | Electric co | nand
eating + H
poling | 49,
P 0,
0, | 00
00
00 | Fixed i
Transp
Total | le dema
imp/exp
portation | o. 0,0
n 0,0
49,0 | 0
0
0 | | | Group
CHP
Heat F
Boiler | | | | 5 elec
0,41 | | r CO
0
3,0 | | Minimu
Stabilis | regulat
um Stat
sation s | | 00
share
CHP | ical regu
1000000
0,0
0,0
45 | 0 | E | lec. S | Ca
Storage
e 1: | MW-e | Storage
GWH | 0,80 | The | | District he
District he
Solar The
Industrial
Demand | eating den
rmal
CHP (CSI | and | | Gr.1
1,59
0,00
0,00
1,59 | Gr.
10,0
0,0
0,0
10,0 | 00 15
00 (| 6r.3
5,84
0,00
2,41
3,43 | Sum
27,4
0,0
2,4
25,0 | D
1 | Group
CHP
Heat F
Boiler
Conde | ump | 2000
0
9000 | 0
5000 | | 0,9 | 3,0 | 0 | Minimu
Heat P
Maxim
Distr. N | um PP
'ump m
um imp | aximum
ort/expo | share
ort
lour_no | 1,0 | 0 MW
0 MW | E | harge
ischa
lectro
lockb | arge 1:
e 2:
arge 2:
olysers:
ed Stora
fuel rati | (
age: (| | 0,90
0 0,80
0,90
0 0,80
0 1,00 |)
)
) 0,0 | | Wind
Photo Vol | taic | 20 | 00 MW
0 MW | 4 | | Wh/yea
Wh/yea | | | | | torage:
Boiler: | | 0 GWh
0 Perc | | | 10 GW
0,0 Per | | Multipli
Depen | | | 2,00 | DKK/N | //Wh pr. I | MW | TWh/ | year) | Coal | Oil N | Ngas Bi | omas | | Wave Por
River Hyd
Hydro Por
Geotherm | lro
wer | r | 0 MW
0 MW
0 MW
0 MW | | 0 T | Wh/yea
Wh/yea
Wh/yea
Wh/yea | r 0,0 | | | Gr.1:
Gr.2:
Gr.3: | city pro | d. from | 0,00
0,00
1,73 | 0,00 |) | h/year) | | Averag
Gas St
Syngas
Biogas | orage
s capac | | 227
0
0
0 | DKK/N
GWh
MW
MW | //Wh | H
Ir | ransp
louse
idustr
ariou | hold
y | 0,01 | 69,20
4,20
26,92
0,00 | 0,00
4,66
18,19
0,00 | 0,00
4,55
5,18
0,00 | | Outp | ut | _ | D | | | Dist | trict Hea | | | | | | | | | | | | | | | Electri | | | | | | -1 | | | Exch | ange | | - | Demand
Distr.
heating | Solar | | DHP | CHP | HP | ELT | Boiler | EH | Ba-
lance | | Flex.&
d Transp. | HP tr | Elec-
olyser | EH | Hydro | Tur-
bine | RES | Hy-
dro t | Geo-
hermal | Waste | CHP | PP | | np | Exp | CEEP | | Payme | Ex | | January | MW
4674 | MW | MW
274 | MW
271 | MW
3943 | MW | MW | MW
186 | MW | MW | 6508 | MW | MW | MW | MW | MW | MW | MW
629 | MW | MW | MW
197 | MW
3234 | MW 2448 | % I | WN
0 | MW | MW | MW | Million | DKK | | February
March | 4768
4147 | 0 | 274
274 | 276 | 3953
3650 | 0 | 0 | 260 | 0 | 5
-27 | 6329 | 0 | 0 | 0 | 0 | 0 | 0 | 600
475 | 0 | 0 | 197
197 | 3241
2993 | 2291 | 100 | 0 | 0 | 0 | 0 | 0 | | | viaren
April | 3438 | 0 | 274 | 199 | 2964 | 0 | 0 | 0 | 0 | -27 | 5468 | 0 | 0 | 0 | 0 | 0 | 0 | 445 | 0 | 0 | 197 | 2431 | 2395 | 100 | 0 | 0 | 0 | 0 | 0 | | | May | 2823 | 0 | 274 | 164 | 2385 | 0 | 0 | 0 | 0 | 0 | 5047 | 0 | 0 | 0 | 0 | 0 | 0 | 438 | 0 | 0 | 197 | 1955 | 2457 | 100 | 0 | 0 | 0 | 0 | 0 | | | June
July | 1594
1594 | 0 | 274
274 | 92
92 | 1227
1227 | 0 | 0 | 0 | 0 | 0 | 5035
4797 | 0 | 0 | 0 | 0 | 0 | 0 | 379
288 | 0 | 0 | 197
197 | 1006
1006 | 3453
3306 | 100
100 | 0 | 0 | 0 | 0 | 0 | | | August | 1594 | 0 | 274 | 92 | 1227 | ō | ō | 0 | 0 | ō | 5037 | ō | o | ō | ō | ō | 0 | 331 | ō | 0 | 197 | 1006 | 3502 | 100 | 0 | 0 | ō | ō | 0 | | | September | | 0 | 274 | 124 | 1740 | 0 | 0 | 0 | 0 | 0 | 5252 | 0 | 0 | 0 | 0 | 0 | 0 | 424 | 0 | 0 | 197 | 1427 | 3204 | 100 | 0 | 0 | 0 | 0 | 0 | | | October
November | 2903
3630 | 0 | 274
274 | 168
210 | 2461
3145 | 0 | 0 | 0 | 0 | 0 | 5549
5909 | 0 | 0 | 0 | 0 | 0 | 0 | 422
603 | 0 | 0 | 197
197 | 2018
2579 | 2912
2531 | 100
100 | 0 | 0 | 0 | 0 | 0 | | | December | 4221 | ō | 274 | 245 | 3553 | 0 | 0 | 126 | 0 | 24 | 5978 | ō | ō | 0 | ō | 0 | 0 | 641 | ō | 0 | 197 | 2913 | 2227 | 100 | 0 | 0 | ō | 0 | 0 | | | Average | 3123 | 0 | 274 | 181 | 2620 | 0 | 0 | 48 | 0 | 0 | 5578 | 0 | 0 | 0 | 0 | 0 | 0 | 472 | 0 | 0 | 197 | 2148 | 2761 | 100 | 0 | 0 | 0 | 0 | Avera | ge pr | | Maximum
Minimum | 7744
1468 | 0 | 274
274 | 449
85 | 4085
1108 | 0 | 0 | 2936
0 | 0 | 1920
-1212 | 8861
3317 | 0 | 0 | 0 | 0 | 0 | 0 | 1980 | 0 | 0 | 197
197 | 3350
909 | 5861
0 | 100
100 | 0 | 0 | 0 | 0 | (DKI
221 | K/MV | | TWh/year | 27.43 | 0.00 | 2.41 | | 23.01 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | 49.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 4.15 | 0.00 | 0.00 | 1.73 | | 24.25 | | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 2 | | FUEL BA | | _ | ır): | - | | Boiler3 | PP | | u. Hydn | Wa | ste/ C/ | AES Bio | Con- Ele | ectro- | Vind | PV and | | off | | -, | | | Industry | у | Impi | /Exp Co | rrected | CO2 | 2 emissio | | | Coal | UNP | UHP. | 26,36 | | | | 53.90 | Geu/N | u. mydn | o nii | | c.ly. vers | son ru | e 1 | vinu | USF | wave | - nyai | J 30 | nell . I fi. | manisp. | | . Various
3.37 | 83.75 | - | | 83.75 | _ | otal Ne | | | Oil | 1,77 | | 20,30 | | | 0,07 ± | - | | | | | | | - | - | - 1 | - 1 | | | - 60 | 9,20 | 0,01
4,20 | 26,92 | 102,20 | | 0,00 | 102,20 | | 7,23 27 | | | N.Gas | - | 19,66 | - | 0, | 05 | 0,07 | - | - | - | | | | | - | - | - | - | - | | - | - | 4,66 | 18,19 | 42,63 | | 0,00 | 42,63 | 8 | 3,70 8, | .70 | | Biomass
Renewabi | -
la | - | - | 0, | 05 | 0,07 | - | - | - | | | | | - | 4.15 | - | - | - | | - | - | 4,55 | 5,18 | 9,85
4.15 | | 0,00 | 9,85
4.15 | | | .00 | | H2 etc. | - | - 1 | | | | | - 1 | | | | | | | | 4,10 | - 1 | - 1 | - 1 | | | - | | | 0,00 | 1 - | 0,00 | 0,00 | | ., | .00 | | Biofuel | - | - | - | | - | - | - | - | - | | | | | - | - | - | - | - | | - | - | - | - | 0,00 | (| 0,00 | 0,00 | | 0,00 | ,00 | | Nuclear/C | | - | - | | - | - | - | - | - | | | | | - | - | - | - | - | | - | - | - | | 0,00 | | 0,00 | 0.00 | _ | 0,00 | .00 | | Total | 1.77 | 19.66 | 26.36 | | 19 | 0.28 | 53.90 | | | | | | | | 4,15 | | | | | - | 9.20 | 13.42 | 53.66 | 242.58 | | | 242.58 | 1 0 | 1,57 64 | | Read the results of question 2.2.1: The Primary energy supply has been reduced from 264.05 to 242.58 TWh/year. The CO2 emission has been reduced from 72.72 to 64.57 Mt/year. #### Exercise 2.3: Add 3000 MW off-shore wind power Add 3000 MW off-shore wind power. Use the hour distribution file "DK offshorewind 2013.txt" The electricity production from CHP in combination with wind power may lead to hours in which the production exceeds the demand, known as excess electricity production. The energy system analysis will identify and quantify this excess production. However, such balancing problems depend on the regulation of the electricity production units. Basically, the model differs between operating CHP units 1) to meet solely heat demand or 2) to meet both heat and electricity demands (Regulation strategy 1 and 2). Question 2.3.1: What is 1) the excess electricity production, 2) the primary energy supply and 3) the CO2 emission of the system if the CHP units are regulated solely according to the
heat demand? Question 2.3.2: What is the answer if the CHP units are regulated according to both the heat and the electricity demand? #### **How to do exercise 2.3:** Use input data file from exercise 2.2. #### Step 1: Add wind power input Choose "Supply" and "Variable Renewable Electricity" and the following window will open: Place the cursor in the input squares and type in the various input values and choose distribution file "DK 2013 Wind offshore" Step 2: Calculate and see result in print output (or clipboard) | Input Exercise 2.txt |--|-------------------------------|---------------|----------------------|----------------------|-----------------------|----------------------------|----------------------|---------------------|---------|----------------------------------|---------|------------|-----------------------|---------------------|------------------|--------------------|-------|----------------------------|------------------------------------|----------------------------|-----------------------------|---------------------------------------|---------------------|------|-------------------------------|----------------------------|--------------------------|------------------------|--------------------------|----------------------| | Fixed dem
Electric he | and
ating + H | 49,0
P 0,0 | 00
00 | Fixed i
Transp | mp/exp. | 0,0 | IO
IO | | | CHP
Heat F | | MW
1350 | -e MJ/
0 1646 | s ele
3 0,4
) | c. The
1 0,5 | er CO
i0
3,0 | | CEEP
Minimu
Stabilis | regulatio
um Stabi
sation sh | on
lisation
are of (| Techn
00
share
CHP | ical regu
10000001
0,01
0,01 | lation no
D
D | o. 1 | Fuel Pr
Elec. S | rice leve
Ca
Storage | el:
npacities
MW-e | Storag | ge Efficie | Ther. | | District he
Solar The
Industrial | ating dem
rmal
CHP (CSI | and | нР | 1,59
0,00
0,00 | 10,00
0,00
0,00 | 0 18 | 5,84
0,00
2,41 | 27,4:
0,0
2,4 | 1 | Group
CHP
Heat F
Boiler | ump | C |) 2439
) (
5000 | 0,4 | 1 0,5 | i0
3,0 | 0 | Minimu
Heat P
Maxim | um PP
ump ma
um impo | ximum
xrt/expo | share
rt | 1,0 | D MW | | Charge
Dischar
Electrol | 2:
irge 2:
ilysers: | (| D
D | 0 0,80
0,90
0 0,80 | 0,00 | | | | | | | | | | | | Heats | torage: | gr.2: 1 | 0 GWI | h (| gr.3: | | | Additio | n factor | | 0,00 | | | | CAES f | fuel ratio | 0: | -, | 0 | | | Wave Pov
River Hyd
Hydro Pov | ver
ro
ver | | 0 MW
0 MW
0 MW | 11 | 0 T/
0 T/
0 T/ | Wh/yea
Wh/yea
Wh/yea | r 0,0
r 0,0 | 0 satio | n | Electri
Gr.1:
Gr.2: | | | 0,00
0,00 | Wast
0,00 | te (TW
0
0 | | cent | Averag
Gas St
Syngas | ge Marke
torage
s capacit | et Price
ty | 227
0
0 | DKK/M
GWh
MW | | MIVV | Transpo
Househ
Industry | ort
hold
y | 0,00
0,01
3,37 | 69,20
4,20
26,92 | 0,00
4,66
18,19 | 0,00
4,55
5,18 | | Outp | ut | ١ | NAF | RNII | NG! | l: (1 |) Cr | itica | ΙE | ces | s; | Distr | rict Heat | ing | | | | | | | | | | | | | | Electric | city | | | | | | | | Exch | ange | | | Demand | | | | Produc | tion | | | | | | | Consur | nption | | | | | Pr | oductio | n | | | | Ba | alance | | | Paume | ont | | | | | | | OUE | _ | 0555 | Million | DKK | | | | | | | | _ | _ | | | | | _ | _ | _ | _ | _ | | | | _ | | | | | | | | | | | | | | _ | | | | _ | _ | | _ | | | _ | _ | _ | _ | _ | _ | | _ | _ | | | | | _ | | | - 1 | _ | | | | | | | | | _ | _ | | | | | _ | _ | _ | _ | _ | _ | | | | | | | | _ | | | | _ | | | | | _ | | | | _ | _ | _ | | | | _ | _ | _ | _ | _ | _ | | | | | | | | | | | - 1 | _ | | | | | _ | | | | | _ | • | _ | | | _ | | | | _ | _ | | _ | _ | | | | | _ | | | | _ | | | | | | | | | | | | | _ | | _ | | - | _ | _ | | 001 | | | | | | | | | 1 | | _ | | | | 2139 | ō | 274 | 124 | 1740 | ō | o | o | ō | Ō | | ō | ō | ō | Ō | o | ō | 1451 | ō | ō | 197 | 1427 | 2181 | 100 | ō | 4 | 4 | 0 | 0 | | | October | | 0 | | 168 | 2454 | 0 | 0 | _ | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 2152 | 0 | 0 | 197 | | 1197 | | 0 | | | | 0 | | | | | | | | | | | | | | | - | | | • | | | | | | | | | | | | | | | | | December | U | 70 | | | | | | | | | | | | | | | | _ | | _ | _ | _ | _ | _ | _ | | | | _ | _ | | | | | | | | 1,59 | 22,83 | 0,00 | 0,00 | 0,50 | 0,00 | | | | | | 0,00 | | | | 0,00 | 0,00 | 1,/3 | 18,81 | _ | | | _ | | | _ | | | FUEL BAL | | | | 3 Boi | iler2 Bo | oiler3 | PP | Geo/N | u. Hydr | | | | | | Wind | | | | ro Sol | ar.Th. T | ransp. | househ. | | | | | | - 1 | | | | | - | - | 26,31 | | | ,08 : | 30,85 | - | - | | | | | - | - | - | - | - | | - | - | | 3,37 | | | | | 20 | | | | | 1,77 | - | - | | | | - | - | - | | | | | - | - | - | - | - | | - 69 | ,20 | | | | | | | | | | | | - | 19,56 | - | | | | - | - | - | | | | | - | - | - | - | - | | - | - | | | | | | | | | | | | | | | U,U | . U | ,08 | | | - | | | | | - | 4 15 | | 11.34 | - | | | - | +,00 | 0,18 | | | | | | | | | | | _ | - : | | | _ | - | - | - : | | | | | _ | .,10 | | | | | | _ | | | | | | | | | | | Biofuel | - | - | - | | - | - | - | - | - | | | | | - | - | - | - | - | | | - | - | - | 0,00 | 0 | 00,0 | 0,00 | | | 00 | | Manhamato | CS - | | | | _ | _ | | | | | | | | | | | | | | | | | _ | 0.00 | | .00 | 0.00 | 1 (| 0,00 0. | .00 | | Nuclear/C | - | 0,00 | | ,00 | 0,00 | ш. | -, | | Read the results of question 2.3.1: The Primary energy supply has been reduced from 242.58 to 230.80 TWh/year. The CO2 emission has been reduced from 64.57 to 56.67 Mt/year. Critical Excess Electricity Production (CEEP) = 0.91 TWh/year Change the technical regulation strategy to 2 by activating the Change technical regulation strategy button. # Step 4: Calculate and see result in print output (or clipboard) Activate the "Run (print)" button and get the following print: | Input | t | Ex | ercis | e2.t | κt | | | | | | | | | | | | | | | The | e Er | erg | yPL/ | ١N | mod | del 1 | 6.2 | 2 | 1 | |---|----------------------|--|--------------------------|---|------------------------------|-------------------------------|-------------------------|----------------------|--|---------------------------------|-------------------|--|---------------------|--------------------|------------------------------|----------------|--|--|------------------------------|-------------------------|--|--------------------------------|-----------------------------------|-------------------------------------|---|-----------------------------------|-------------------------------|--|-------------------| | Fixed den
Electric h
Electric co | eating + H
poling | 49,0
IP 0,0 | 00
00
00 | Flexible d
Fixed imp
Transport
Total | o/exp.
tation | 0,00
0,00
0,00
49,00 | | | Group
CHP
Heat I | | | pacities
e MJ/:
1646
0
5000 | s ele
3 0,4
) | | er CO
50
3,0 | | Minimu
Stabilis | tion Str
regulati
im Stab
sation sl
im CHP | on
ilisation
hare of | 00
share
CHP | ical regu
1000000
0,0
0,0
45 | 10 | | Elec. S
Charg | Storage
e 1: | apacities
MW- | e GW | 0 0,80 | Th | | District he
Solar The
Industrial | rmal
CHP (CS | ting demand 1.59 10.00 15.84 HP (CSHP) 0.00 0.00 0.00 2.41 Her solar and CSHP 1.59 10.00 13.43 2000 MW 1.15 TWhyear 0.00 ind 3000 MW 1.134 TWhyear 0.00 er 0 MW 0 | | | | | | 13
10
11
12 | Group
CHP
Heat I
Boiler
Cond | | 2000
0
9000 | 5000 |) | 0,9 | 3,0 | 0 | Minimu
Heat P
Maximi
Distr. N | ım PP
ump ma
um imp | aximum
ort/expo | share
ort
Hour_no | 1,0 | 0 MW
0 MW
xt | | Charg
Discha
Electro
Rockb | arge 1:
e 2:
arge 2:
olysers:
ed Stor
fuel rat | age: | | 0,90
0 0,80
0,90
0 0,80
0 1,00 |)
)
) 0 | | Wind
Offshore
Wave Por
River Hyd
Hydro Po | wer
Iro | 1 | | | | | | | Fixed | torage:
Boiler:
icity pro | gr.2: 0, | 0 GWH
0 Per 0
CSHP
0,00
0,00 | Wast
0,00 | gr.3: (
te (TW) | 10 GW
0,0 Per
'h/year) | - 1 | Depen
Averag
Gas St | cation for dency for Marketon orage so capaci | actor
et Price | 2,00
0,00 | | /IWh pr.
/IWh | MW | (TWh/
Transp
House
Indust | year)
oort
hold | 0,00
0,01 | Oil
69,20
4,20
26,92 | | 0,0
4,5
5,1 | | Geotherm | _ | r | 0 MW | | 0 TWh | /year | | | Gr.3: | | | 1,73 | | | | | Biogas | max to | grid | 0 | MW | | | Variou | IS | 0,00 | 0,00 | 0,00 | 0,0 | | Outp | ut | | | District | Uzze | | | | | | | | | | | | | | Florida | | | | | | | | | Fush | _ | | _ | Demand
Distr. | | Waste+ | | | | | | Ba- | Elec. | Flex.& | Consun | nption
Elec- | | Hydro | Tur- | | P
Hy- |
Electri
roduction
Geo- | | _ | | Stab- | В | lalance | | | Payme | | | | heating
MW | Solar
MW | CSHP | | HP H | P EL | | EH
MW | lance
MW | | d Transp. | | rolyser
MW | EH
MW | Pump | bine
MW | RES
MW | | ermal | CSHP | | PP
MW | | lmp
MW | Exp
MW | CEEP
MW | EEP
MW | Imp
Million | DK | | anuary
ebruary
farch | 4674
4768
4147 | 0 | 274
274
274 | 276 3 | 800
756
353 | 0 | 0 530
0 458
0 307 | 1
1
0 | -3
3
-27 | 6508
6329
6059 | 0 | 0 | 0 | 1
1
0 | 0 | 0 | 2121
1778
2034 | 0 | 0 | 197
197
197 | 2952
3080
2749 | 1238
1275
1079 | 100
100
100 | 0 | 0 | 0 | 0 | | | | April
May
June | 3438
2823
1594 | 0 | 274
274
274 | 164 2 | 940
373
220 | 0 | 0 22
0 4 | 2
7
8 | 0
1
-1 | 5468
5047
5035 | 0 | 0 | 0 | 2
7
8 | 0 | 0 | 1583
1410
1548 | 0 | 0 | 197
197
197 | 2410
1946
1001 | 1280
1501
2297 | 100
100
100 | 0 | 0 | 0 | 0 | | | | July
July
August
September | 1594
1594 | 0 | 274
274
274
274 | 92 1:
92 1: | 227
227
227
740 | 0 | 0 0 | 0 | 0 | 4797
5037
5252 | 0 | 0 | 0 | 0 | 0 | 0 | 994
1408
1451 | 0 | 0 | 197
197
197 | 1006
1006
1427 | 2600
2427
2178 | 100
100
100 | 0 | 0 | 0 | 0 | 0 | | | October
November
December | 2903
3630
4221 | 0 | 274
274
274 | 168 24
210 25 | 438
980
959 | 0 | 0 13
0 150
0 710 | 2
12
17 | 7
3
17 | 5549
5909
5978 | 0 | 0 | 0 | 2
12
17 | 0 | 0 | 2152
2128
2547 | 0 | 0 | 197
197
197 | 1999
2444
2426 | 1202
1153
825 | 100
100
100 | 0 | 0 | 0 | 0 | 0 | | | Average
Maximum | 3123
7744 | 0 | 274
274 | 181 24
449 4 | 480
085 | 0 | 0 183
0 4791 | 4
1012 | 0
2909 | 5578
8861 | 0 | 0 | 0 | 1012 | 0 | 0 | 1764
4868 | 0 | 0 | 197
197 | 2034
3350 | 1588
5295 | 100
100 | 0 | 0 | 0 | 0 | Averag | | | Minimum
TWh/year | 1468
27,43 | 0,00 | 274 | 85
1,59 21 | ,79 O | ,00 0, | | 0,04 | -1812 | 3317
49,00 | | 0,00 | 0,00 | 0,04 | 0,00 | 0,00 | 30
15,49 | 0,00 | 0,00 | 1,73 | | 13,95 | 100 | 0,00 | ,00 | 0,00 | 0,00 | | _ | | FUEL BA | LANCE (T | Wh/yea | | Boiler | 2 Boile | r3 PP | Geo/h | lu. Hydr | | | AES Bio(| Con- Ek | | Wind | PV an | d Wind
Wave | | ro So | lar.Th. | Transp. | househ | Industr | • | lmp
lr | /Ello Co | orrected | 4 | 2 emissio
Fotal Ne | | | Coal
Oil
N.Gas
Biomass | 1,77 | 19,27 | 24,30 | 0,09
0,09
0,09
0,09 | 0,36
0,36
0,36
0,36 | - | -
-
- | - | | -
-
- | | | - | - | - | - | - | | -
- 6 | 9,20 | 0,01
4,20
4,66
4,55 | 3,37
26,92
18,19
5,18 | 59,13
102,53
42,57
10,18 | (| 0,00
0,00
0,00
0,00 | 59,13
102,53
42,57
10,18 | 2 | 0,00 0, | ,31
,69
,00 | | Renewab
H2 etc.
Biofuel
Nuclear/C | : | | | - | | - | - | - | | | | | | 4,15
-
- | - | 11,34 | | | -
-
- | | : | : | 15,49
0,00
0,00 | - (| 0,00
0,00
0,00
0,00 | 15,49
0,00
0,00
0,00 | | 0,00 0,
0,00 0, | 00,
00,
00, | Read the results of question 2.3.2: The Primary energy supply has been reduced from 230.80 to 229.90 TWh/year. The CO2 emission has been reduced from 56.67 to 56.23 Mt/year. Critical Excess Electricity Production (CEEP) is reduced from 0.91 to 0 TWh/year ## **Exercise 2.4: Implement electricity-saving measures** Decrease the electricity demand by 30% from 49 to 34.3 TWh/year. Question 2.4.1: What is 1) the excess electricity production, 2) the primary energy supply and 3) the CO2 emission of the system if the CHP units are regulated solely according to the heat demand? Question 2.4.2: What is the answer if the CHP units are regulated according to both the heat and the electricity demands? Step 2: Calculate and see result in print output (or clipboard) | Inpu | t | Ex | ercis | se2 | .txt | | | | | | | | | | | | | | | | The | e En | ergy | /PL/ | ۱N | mod | lel 1 | 6.2 | 2 | A | |--|--|---|--|---|--|--|---|--|---|---|---|---|---|---|---|---|---|---|---|---|--|---|---|--|---|--|--|---|---|--| | Fixed der
Electric h
Electric c
District h
District h
Solar The
Industrial | eating + H
ooling
eating (TW
eating dem | 34,3
P 0,0
0,0
/h/year)
nand
HP) | 30
00
00 | Fixed | Gr. 10,0 | o. 0,0
n 0,0
34,3
2 0
00 1: | 10 | Sum
27,4
0,0
2,4
25,0 | 0 | Group
CHP
Heat F
Boiler
Group
CHP
Heat F
Boiler
Conde | Pump | | 0
5000
2439
0
5000 | 0,41
0,41
0,45 | 0,5i
0,9i
0,5i | 7 COI
0 3,0
0 3,0 | D | CEEP Minimo Stabilio Minimo Minimo Heat F Maxim Distr. I | regulati
um Stab
sation sl
um CHF
um PP
ump ma
um imp | on
illisation
hare of (
gr 3 los
aximum
ort/expo | share
CHP
ad
share | 0000000
0,0
0,0
45
1,0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Elec. S
Charge
Discha
Charge
Discha
Electro
Rockb | Ca
Storage
e 1:
arge 1:
e 2:
arge 2: | MW- | s Storage GWI
0
0
0
0 | 0 0,80
0,90
0 0,80
0,90
0 0,80
0 1,00 | Ther. | | Wind
Offshore
Wave Po
River Hydro Po
Geothern | wer
dro
wer
nal/Nuclea | 300
r | O MW
O MW
O MW
O MW | 1 | 1,34 T
0 T
0 T
0 T | TWh/yea TWh/yea TWh/yea TWh/yea TWh/yea TWh/yea | ar 0,0
ar 0,0
ar 0,0
ar | 00 stab
00 satio
00 shar | ili-
on
e | Electri
Gr.1:
Gr.2:
Gr.3: | icity prod | gr.2: 0, | 0 GWh
0 Per or
CSHP
0,00
0,00
1,73 | ent gr | r.3: 0
e (TWI | 10 GW
),0 Per
h/year) | | Depen
Averag
Gas S
Synga | ication f
dency fa
ge Mark
torage
s capac
s max to | actor
et Price
ity | 2,00
0,00
227
0
0 | DKK/N
DKK/N
GWh
MW
MW | IWh pr. I | vivv | (TWh/
Transp
House
Industr
Variou | ort
hold
y | 0,00
0,01
3,37
0,00 | Oil 1
69,20
4,20
26,92
0,00 | 0,00
4,66
18,19
0,00 | 0,00
4,55
5,18
0,00 | | | | | | Dist | trict He | ating | _ | | | | | | | | | | | | | Electri | city | | | | | | | | Exch | nange | | _ | Demand | | | | Produ | _ | | | | | | | Consum | ption | | | | | Р | roductio | _ | | | | В | alance | | | | | | | Distr.
heating
MW | Solar
MW | Waste+
CSHP
MW | DHP
MW | CHP
MW | HP
MW | ELT
MW | Boiler
MW | EH
MW | Ba-
lance
MW | Elec.
demand
MW | Flex.&
Transp.
MW | HP tro | | EH
MW | Hydro
Pump
MW | Tur-
bine
MW | RES
MW | Hy-
dro th
MW | Geo-
nermal
MW | Waste
CSHP
MW | | | Stab-
Load
% | lmp
MW | Exp
MW | CEEP
MW | EEP
MW | Payme
Imp
Million | Exp | | January February March April May June July August September October November December Average Maximum Minimum TWhiyear | 4674
4768
4147
3438
2823
1594
1594
1594
1239
2903
3630
4221
3123
7744
1468 | 0
0
0
0
0
0
0
0 | 274
274
274
274
274
274
274
274
274
274 | 271
276
240
199
164
92
92
124
168
210
245
181
449
85 | 3881
3883
3568
2982
2368
1251
1227
1221
1743
2437
3132
3567
2602
4085
1084 | 0 | 0 | 248
335
65
3
0
0
0
0
0
13
135
66
2936
0 | 0 |
0
0
0
-21
17
-24
0
6
-3
24
0
0
0
2319
-1918 | 4556
4430
4241
3827
3533
3524
3358
3676
3884
4136
4185
3905
6203
2322
34.30 | 0 | 0
0
0
0
0
0
0
0
0 | 0 | 0 | 0
0
0
0
0
0
0
0
0 | 0 | 2121
1778
2034
1583
1410
1548
994
1406
1451
2152
2128
2547
1764
4868
30 | 0 | 0 | 197
197
197
197
197
197
197
197
197
197 | 3182
3184
2926
2446
1942
1026
1006
1001
1429
1998
2569
2925
2133
3350
889 | 207
155
143
69
218
919
1211
1035
726
183
163
105
429
3002
0 | 100
100
100
100
100
100
100
100
100
100 | 0 | 1152
884
1058
467
234
165
50
114
127
646
919
1589
618
4911
0 | 1152
884
1058
467
234
165
50
114
127
646
919
1589
618
4911
0 | 0 | | 176
113
172
73
37
24
18
22
111
145
268
1ge price
K/MWh)
214 | | FUEL BA | LANCE (T | Wh/yea | | 3 Bo | oiler2 E | 3oiler3 | PP | Geo/N | u. Hydr | | | | Con- Ele
sion Fue | | Vind | PV and | d Wind
Wave | | ro So | lar.Th. T | ransp. | househ. | Industry | | | /Exp Co
np/Exp | | | 2 emissio
otal Ne | | | Coal Oil N.Gas Biomass Renewab H2 etc. Biofuel Nuclear/C | - | 19,47
-
-
-
-
-
-
19,47 | 26,23
-
-
-
-
-
-
-
-
-
- | 0,
0,
0, | ,07
,07
,07
-
- | 0,09
0,09
0,09
0,09
-
-
-
- | 8,37
-
-
-
-
-
-
-
-
-
-
-
-
- | - | - | | - | | | ·
· | 4,15
-
-
-
4,15 | | 11,34 | - | | - 69
-
-
-
- | 20 | 0,01
4,20
4,66
4,55
-
-
- | 3,37
26,92
18,19
5,18
-
-
-
-
53,66 | 38,14
102,25
42,48
9,89
15,49
0,00
0,00
0,00 | 0 | 0,00
0,00
0,00
0,00
0,00
0,00 | 26,08
102,25
42,48
9,89
15,49
0,00
0,00
0,00 | 2 | 7,24 27
3,67 8
0,00 0
0,00 0
0,00 0
0,00 0 | ,92
,24
,67
,00
,00
,00
,00
,00 | Read the results of question 2.4.1: The Primary energy supply has been reduced from 229.90 to 208.25 TWh/year. The CO2 emission has been reduced from 56.23 to 48.96 Mt/year. Critical Excess Electricity Production (CEEP) is raised from 0 to 5.43 TWh/year Step 3: Change regulation strategy, calculate and read results. Repeat steps 1 and 2. Change the technical regulation strategy to 2 in the simulation window. Activate the "Run (print)" button and read the results of question 2.4.2 on the print: The Primary energy supply has been reduced from 208.25 to 202.89 TWh/year. The CO2 emission has been reduced from 48.96 to 46.70 Mt/year. Critical Excess Electricity Production (CEEP) is reduced from 5.43 to 0 TWh/year # Exercise 2.5: Add heat pump and heat storage capacity to CHP plants Add heat storage capacity of 40 GWh to gr 2 together with a 300 MW heat pump with a COP=3. Question 2.5.1: What is 1) the excess electricity production, 2) the primary energy supply and 3) the CO2 emission of the system if the CHP units are regulated according to both the heat and the electricity demands? Step 2: Calculate and see result in print output (or clipboard) Activate the button and look at the following print output: | Electric coo | and
ating + H
oling | 34,3
P 0,0
0,0 | 30
00 | Fixed i | le dema
imp/exp
portation | 0,0 | 00 | | | Group
CHP
Heat F
Boiler | | | | l/s ele
6 0,4
0 | | er CO
50
3,0 | | CEEP
Minimi
Stabili | ation Str
regulati
um Stab
sation sl
um CHP | on
ilisation
nare of (| 00
share
CHP | cal regu
000000
0,0
0,0
45 | 0 | E | | Ca
orage | MW- | | | ncies
The | |---|-----------------------------|----------------------|--|--------------------------------------|---------------------------------|---|--------------------------------------|------------------------------|----------|---|----------------------|--------------------------------|------------------|-----------------------------|-----------------------------|---------------------|--------------------|--|--|------------------------------|-------------------------------|--|--------------|------------|--------------------------------------|-------------|------------------------------|--------------------------|---------------------------|--------------------------------------| | District hear
District hear
Solar Them
Industrial Ci
Demand aft | iting dem
mal
HP (CSI | and
HP)
and CS | НР | Gr.1
1,59
0,00
0,00
1,59 | Gr.
10,0
0,0
0,0 | 00 1
00
00 1 | 9r.3
5,84
0,00
2,41
3,43 | 27,4
0,0
2,4
25,0 | 1 | Group
CHP
Heat F
Boiler
Conde | ump | 2000
300
9000
gr.2: 1 | 243
90
500 | 9 0,4
0
0
0
0,4 | 1 0,5
0,9
5 | i0
3,0 | ᆣ | Minimi
Heat F
Maxim
Distr. I
Additio | um PP
ump ma
um imp
Name :
on factor | ximum
ort/expo | share
rt
our_no
0,00 | 1,0 | 0 MW
0 MW | E | | 2:
ge 2: | age: | 0 0
0 0
0 0
0 0 | 0,90
0,80
1,00 | 0,0 | | Wind
Offshore W
Wave Powe
River Hydro
Hydro Powe
Geothermal | er
o
er
I/Nuclea | 300 | 00 MW
00 MW
0 MW
0 MW
0 MW | 1 | 1,34 T
0 T
0 T
0 T | TWh/yea
TWh/yea
TWh/yea
TWh/yea
TWh/yea | ar 0,0
ar 0,0
ar 0,0
ar | 0 stabi
0 satio
0 shan | n
e | Electri
Gr.1:
Gr.2:
Gr.3: | Boiler:
city prod | gr.2: 0. | | cent (
Wast
0 0,0 | gr.3: (
te (TW
0
0 | 0,0 Per | | Depen
Averag
Gas S
Synga | lication f
ndency fa
ge Marke
torage
is capaci
s max to | ector
et Price
ty | 2,00
0,00
227
0
0 | DKK/N
DKK/N
GWh
MW
MW | fWh pr. I | 7 H | ranspo
louseh
dustry
arious | ort
old | 0,00
0,01
3,37
0,00 | 69,20
4,20 | 0,00
4,66
18,19 | mas:
0,00
4,55
5,18
0,00 | | Outpu | ut | | WAF | | | • |) Cr | itica | IEx | ces | s; | Demand | | | Dist | Produ | | | | | | | | Consu | mption | | | | | P | Electric | | | | | Ra | lance | | -+ | Excha | nge | | D | Distr.
neating
MW | Solar
MW | Waste+
CSHP
MW | DHP
MW | CHP | HP
MW | ELT
MW | Boiler
MW | EH
MW | Ba-
lance
MW | Elec.
demand | Flex.&
Transp.
MW | | Elec-
trolyser
MW | EH
MW | Hydro
Pump
MW | Tur-
bine
MW | RES
MW | Ну- | Geo-
ermal
MW | Waste
CSHP
MW | | PP
MW | | | Exp
MW | CEEP | EEP
MW | Payme
Imp
Million I | Ex | | anuary | 4674 | 0 | 274 | 271 | 2690 | 559 | 0 | 849 | 31 | 0 | 4556 | 0 | 186 | 0 | 31 | 0 | 0 | 2121 | 0 | 0 | 197 | 2206 | 249 | 100 | 0 | 0 | 0 | 0 | 0 | Т | | ebruary
March | 4768
4147 | 0 | 274
274 | 276
240 | 2998
2477 | 504
501 | 0 | 699
632 | 16
36 | -13 | 4430
4241 | 0 | 168
167 | 0 | 16
36 | 0 | 0 | 1778
2034 | 0 | 0 | 197
197 | 2458
2031 | 182
183 | 100
100 | 0 | 0 | 0 | 0 | 0 | | | pril | 3438 | 0 | 274 | 199 | 2542 | 287 | 0 | 126 | 28 | -18 | 3827 | 0 | 96 | 0 | 28 | 0 | 0 | 1583 | 0 | 0 | 197 | 2084 | 87 | 100 | 0 | 0 | 0 | 0 | 0 | | | fay
une | 2823
1594 | 0 | 274
274 | 164
92 | 2228
1123 | 105
95 | 0 | 26
4 | 29
39 | -4
-33 | 3533
3524 | 0 | 35
32 | 0 | 29
39 | 0 | 0 | 1410
1548 | 0 | 0 | 197
197 | 1827
920 | 162
935 | 100
100 | 0 | 5 | 0
5 | 0 | 0 | | | uly | 1594 | o | 274 | 92 | 1186 | 29 | o | ō | 13 | -55 | 3358 | 0 | 10 | ō | 13 | 0 | 0 | 994 | 0 | ŏ | 197 | 972 | 1217 | 100 | 0 | 0 | 0 | 0 | Ö | | | ugust | 1594 | 0 | 274 | 92 | 1104 | 80 | 0 | 11 | 17 | 16 | 3526 | 0 | 27 | 0 | 17 | 0 | 0 | 1406 | 0 | 0 | 197 | 905 | 1061 | 100 | 0 | 0 | 0 | 0 | 0 | | | eptember | 2139 | 0 | 274 | 124 | 1659 | 53 | 0 | 20 | 21 | -13 | 3676 | 0 | 18 | 0 | 21 | 0 | 0 | 1451 | 0 | 0 | 197 | 1360 | 707 | 100 | 0 | 0 | 0 | 0 | 0 | | | October
Jovember | 2903
3630 | 0 | 274
274 | 168
210 | 1795
2243 | 329
442 | 0 | 231
387 | 42
75 | 64
-2 | 3884
4136 | 0 | 110
147 | 0 | 42
75 | 0 | 0 | 2152
2128 | 0 | 0 | 197
197 | 1472
1839 | 215
195 | 100
100 | 0 | 0 | 0 | 0 | 0 | | | ecember | 4221 | 0 | 274 | 245 | 1893 | 616 | 0 | 1047 | 144 | 2 | 4185 | 0 | 205 | 0 | 144 | 0 | 0 | 2547 | 0 | 0 | 197 | 1552 | 238 | 100 | 0 | 0 | 0 | 0 | 0 | | | verage | 3123 | 0 | 274 | 181 | 1990 | 300 | 0 | 336 | 41 | 0 | 3905 | 0 | 100 | 0 | 41 | 0 | 0 | 1764 | 0 | 0 | 197 | 1632 | 454 | 100 | 0 | 0 | 0 | 0 | Averag | a n | | Maximum | 7744 | 0 | 274 | 449 | 4085 | 900 | 0 | 5283 | 1930 | 4363 | 6203 | 0 | 300 | 0 | 1930 | 0 | 0 | 4868 | 0 | 0 | 197 | 3350 | 3002 | 100 | 0 | 725 | 725 | 0 | (DKK | | | finimum | 1468 | 0 | 274 | 85 | 0 | 0 | 0 | 0 | 0 | -1991 | 2322 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 0 | 0 | 197 | 0 | 0 | 100 | 0 | | 0 | 0 | 222 | | | Wh/year | 27,43 | 0,00 | 2,41 | 1,59 | 17,48 | 2,63 | 0,00 | 2,95 | 0,36 | 0,00 | 34,30 | 0,00 | 0,88 | 0,00 | 0,36 | 0,00 | 0,00 | 15,49 | 0,00 | 0,00 | 1,73 | 14,34 | 3,98 | | 0,00 | 00,00 | 0,00 | 0,00 | 0 | _ |
 FUEL BALA | ANCE (T | Wh/vea | r): | | | | | | | Was | ste/ C/ | AES Bio | Con- F | lectro- | | PV and | d Wind | off | | | | | Industry | , | Imp/E | x Co | rrected | 0.02 | emissio | (M | | | DHP | CHP2 | | 3 Bo | iler2 E | Boiler3 | PP | Geo/N | u. Hydro | | | | | | Wind | CSP | Wave | | lro So | ar.Th. T | ransp. | househ | | | | р/Ехр | Mot | | tal Ne | | | Coal | - | - | 18,85 | 0. | 44 | 0,38 | 8,86 | - | - | - | | | | - | - | - | - | | | | - | 0,01 | 3,37 | 31,91 | -0, | 01 | 31,90 | 10 | ,91 10,1 | 1 | | Oil | 1,77 | - | - | 0. | 44 | 0,38 | - | - | - | - | | | | - | - | - | - | | | - 69 | .20 | 4,20 | 26,92 | 102,91 | 0. | 00 | 102,91 | 27 | 41 27 | 1 | | N.Gas | - | 16,11 | - | | | 0,38 | - | - | - | - | | | | - | - | - | - | | | - | - | 4,66 | 18,19 | 39,78 | | 00 | 39,78 | | 12 8, | | | Biomass | - | - | - | 0, | 44 | 0,38 | - | - | - | - | | | | - | 4.15 | - | - | - | | - | - | 4,55 | 5,18 | 10,55 | | 00 | 10,55 | | 00,00 | | | Renewable
H2 etc | | | - | | - | | | | - | | | | | | 4,15 | | 11,34 | | | | | | | 15,49 | | 00
00 | 15,49 | | 00, 00,
00 00. | | | Biofuel | | | | | _ | - | - | - | - | | | | | - | - | - | | | | | _ | - | | 0,00 | | 00 | 0,00 | | ,00 0,0 | | | Nuclear/CC | s - | - | - | | - | - | - | - | - | | | | | - | - | - | - | | | - | - | - | | 0.00 | | 00 | 0,00 | | 00 0 | 0 | | Total | 1,77 | 16,11 | 18,85 | 1 | 76 | 1,52 | 8,86 | - | - | | | | | - | 4,15 | - | 11,34 | | | - 69 | ,20 | 13,42 | 53,63 | 200,64 | -0. | 01 2 | 200,63 | 46 | ,45 46,4 | 4 | Read the results of question 2.5.1: The Primary energy supply has been reduced from 202.89 to 200.64 TWh/year. The CO2 emission has been reduced from 46.70 to 46.45 Mt/year. Critical Excess Electricity Production (CEEP) is still 0 TWh/year REMEMBER to save exercise 2. You will need it when doing exercise 3.